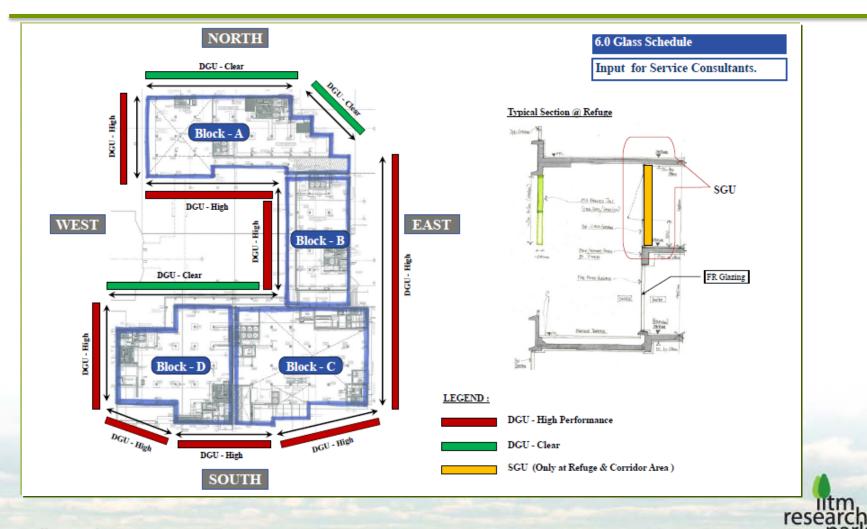
Outstanding Energy Saving Technology

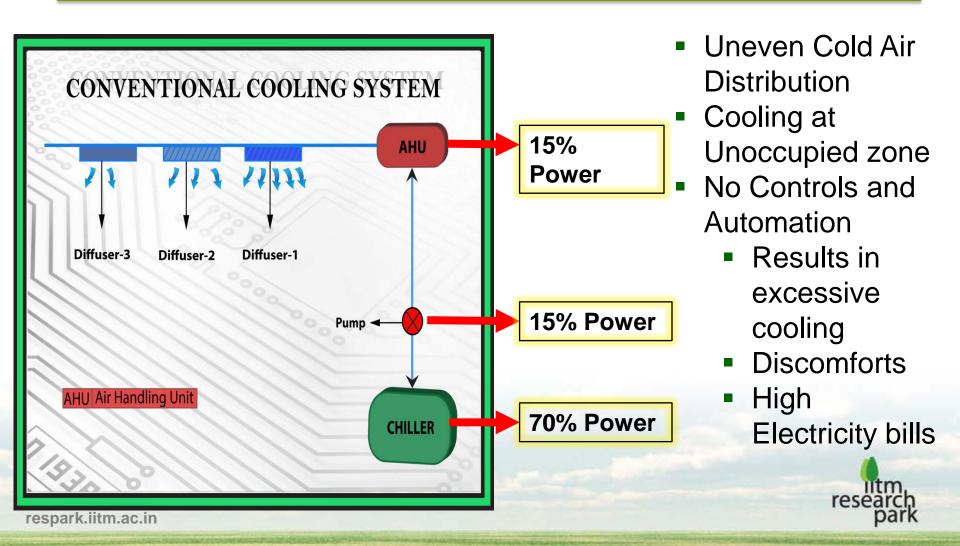


Contents

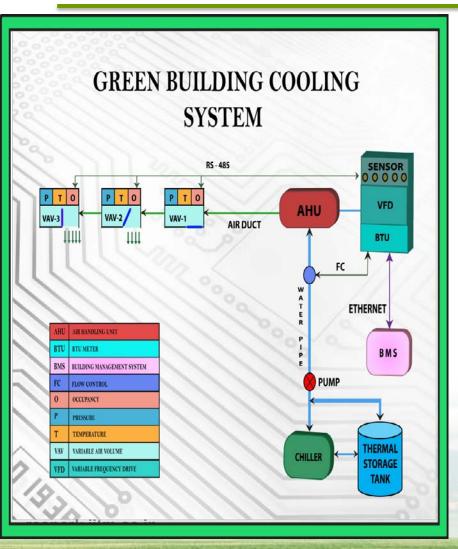
- Energy Efficient Measures
 - Building Envelope
 - Cooling System
 - Thermal Storage Tank
 - VAV & VFD
 - Commercials for the Energy Efficient HVAC
 - DC Lighting & Appliances
- Energy Efficient Measures- Generic
- IBMS
- Solar Power Consumption

IITMRP Energy Efficient Measures- Building Envelope

IITMRP Energy Efficient Measures- Building Envelope

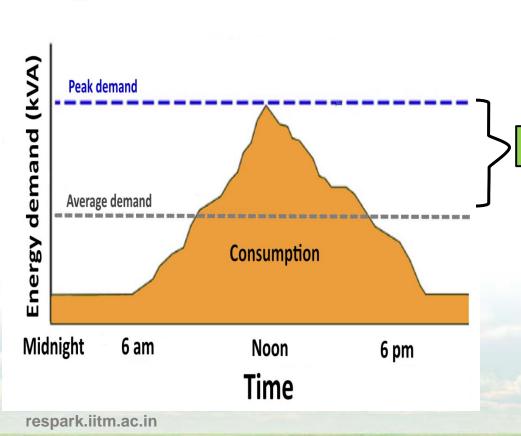

The Glass used for the Façade is Doubly Glazed Unitised Glass:

- DGU High Performance Glass for the South and West Side
- DGU Clear Glass for the North and East Side


Type of product	Double Silver - Offline coated glass
confirming to ECBC standards	< 0.20 solar factor
Energy efficiency possibilities compared to base case (clear DGU)	57%
Energy efficacy possibilities compared to ECBC standards	30%
Average Lux levels (170Lux) area achieved	80%
Selectivity ratio	1.9
light transmission %	32-39%

Energy Efficient Measures- Cooling System

Energy Efficient Measures- Cooling System

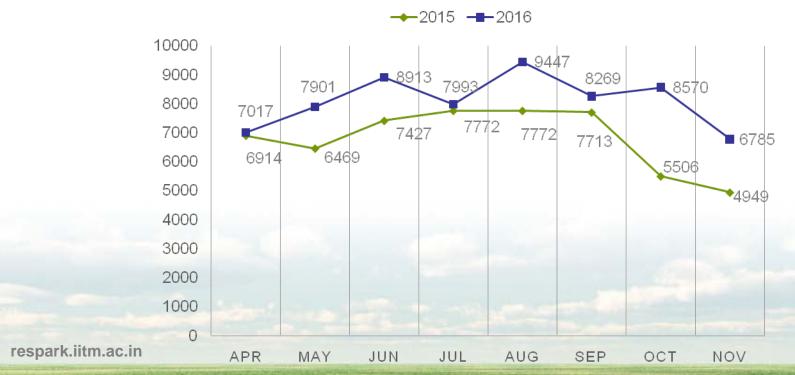

- CO2, humidity and return air/ fresh air temperature sensors and flow-control and metering at AHU
- Communication of parameters to optimise performance
 - RS-485 Comm between VAV and VFD and Ethernet between VFD and ACMS / BMS
- Use of Thermal Storage
 Tank for chilled water
 - Use the chillers when power available at lowest rate

Design of a Green Air- Conditioning System

- Replacing fixed opening Dispenser by Variable Air-flow Volume
 (VAV) dispenser controlling chilled air-flow in each space
 - Add temperature, occupancy, pressure sensor
 - Reduce chilled air requirement, saves cooling energy
- New AHU driven by BLDC Motor / SR Motor / Variable Frequency
 Drive (VFD) for AC induction motor
 - Brings in 25 to 30% energy savings
- Chilled water Controller associated with each AHU
 - Reduce chilled water requirement as AHU runs at lower speed
 - Can save 30 to 40% chilled water / chiller energy

Peak Load

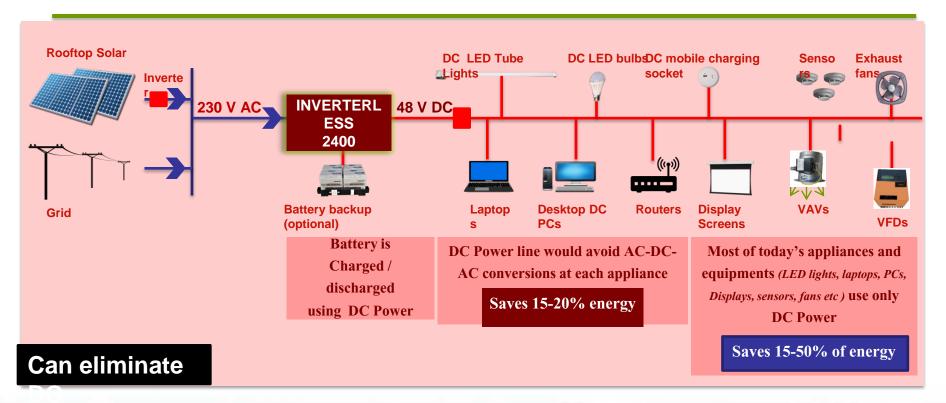
- Minimum charge □350/ kVA
- Peak demand of Research Park: 320 kVA
 - It pays minimum ☐ 12 Lakhs


Add thermal storage

Before and after VFD & VAV

A comparison of power consumption before and after putting up VFD & VAV.

TCOE in IITMRP, shifted to VFD and VAV enabled HVAC systems in April 2016. BEFORE & AFTER VFD/VAV



Energy Efficient Measures- DC Lighting

- Consumes close to 20% of total electric power
 - ■Depends on Diesel Generator for 24 x 7 power
 - With power cuts ranging from an hour or 6 hours
 - More in smaller towns
 - Expensive (4 times grid power) and polluting
- Building Loads
 - Lights, Appliances, electronics, exhaust fans, cooling load,
 lift and water pumps
 - Appliances and electronics are quickly becoming all DC loads
 - will benefit from DC power-lines within buildings

Energy Efficient Measures- DC Lighting

APPLICATIONS:

Energy Efficient Measures- Appliances

 5W LED Bulb instead of 18W CFL Bulb

Cell phone Charger/Socket

DC charger with USB port

BLDC Fan

- 30W instead of 72W AC Induction Fan
- 9W at lowest speed

LED Tube light

 15W - dimmable to 4W, instead of 36W fluorescent tube

Remote Control for Fan & Tube light

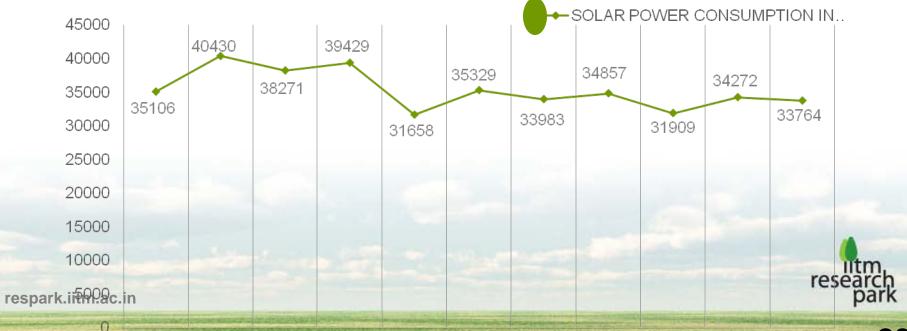
 ON/OFF and for dimming

respark.iitm.ac.in

Energy Efficient Measures- Generic

- Roof-top Solar Powered
- ■Should use LVDC Power line (48V DC) to power its lights, fans and electronic load (including all sensors)
- AHU should have Variable Airflow Volumes (VAVs) with sensors for airdistribution
 - Power VAVs and sensors using DC Power
 - AHU should have integrated chilled-water BTU meters and flow-control
- •Water Pumps should have VFD or have BLDC / SRM motor and driven by solar directly
 - Should be able to pump most water when sun is there
- ■Feeder to each office could either be 230V AC of a 380V DC power-line
 - Can be connected to solar
 - Could drive chiller, pumps, lifts (with VFDs) and AHUs

IBMS


List of items monitored and controlled through the in- house IBMS:

- Energy Meters
- DGs
- Chillers
- AHUs
- •Fire Alarm Panels/Sensors
- Lifts
- ■Inverterless 2500
- Roof-top solar
- CCTVs
- Exhaust FANs
- Level Sensors

Solar Power Consumption

- A 286KW of Solar Power has been set up in Research Park; Cost of elevated structure: Rs.1.8 cr.
- The below chart indicates Solar Power consumed in IITMRP from January to November 2016. Till 30th November, a total of 3,89,008 units (Rs. 31,12,064) of solar power has been consumed. On an average, Solar Power contributes 6% of IITMRP's total power consumption.

JUN

JUL

AUG

SEP

MAY

APR

JAN

23

NOV

THANK YOU

