

Server and Web Application 1

Build a server and an interactive web
application.

Server and Web Application 2

Introduction to
the course:

Part- A: Build a server.

• This course takes you through the process of assembling a PC,
provides step-by-step guidance on how to assemble a server
with the components such as the motherboard, processor, and
RAM that make up the system unit, as well as how to install the
operating system to complete a fully functioning computer,
install necessary software for developing web application. So,
if you’ve ever wondered what it takes to build your own PC, join
the course for this adventure.

Part- B: Build an interactive web application.

• This course will also help you to build an interactive web
application using React as frontend, Spring boot as backend
and MariaDB database. Front-end side is made with React,
React Router, Axios. The back-end server uses Spring Boot with
Spring Web MVC for REST APIs and Spring Data JDBC for
interacting with MariaDB database.

What does this
course aim to
achieve?

Part- A: Build a server.

• The objective of this course is to provide knowledge about
assembling a PC and setting up a web server.

Part- B: Build an interactive web application.

• You'll learn the major components of web application
architectures, build a fully functional full-stack web application.

What is being
built in this
course:

Part- A: Build a server.

• Build a computer from ground up, and then install the
necessary operating system and packages for web application.

Part- B: Build an interactive web application.

Server and Web Application 3

• Build a responsive Restaurant table reservation web
application with following features:

o Customer Login & Registration
o Book a Slot
o Admin Login
o View Bookings
o Clear Bookings
o Check Booking Availability

How is it being
tested:

Verify the installed java version.

Verify with the default resin web page.

Verify the installed node and npm version.

View the MariaDB test database.

Test the web application on the local environment.

Course
Prerequisites

Understanding of JavaScript programming basics.

Basic Java programming.

Knowledge on SQL.

Server and Web Application 4

Build a server.

Server and Web Application 5

 Contents

Prerequisites

Aim

Components

Assembling the PC

Creating a Bootable CentOS USB Stick

Installing CentOS

Installing Oracle Java JDK 17

Starting Resin for development.

- Configuring firewall.

Installing Node.js and npm from Node Source repository.

Enabling MariaDB

- Securing the MariaDB Server

- Testing the Installation

- Login to MySQL

- Show (View) All MySQL Databases

Server and Web Application 6

Automate Services start on reboot.

- Enable MariaDB Service on Boot

- Start resin on Boot.

Installing Google Chrome

Server and Web Application 7

Prerequisites

Topic Resources
PC Build Guide Link

Aim

The objective of this course is to provide knowledge about assembling a PC and setting
up a dedicated web server.

Components

S.no Components Quantity Cost

1 Motherboard 310 MH 1 No 5,550/-

2 Intel I3 8th Gen CPU 1 No 5,050/-

3 8GB DDR RAM 1 No 1,800/-

4 1 TB HDD Drive 1 No 3,050/-

5 ZEBRONICS 18.5” Monitor 1 No 4499/-

6 DELL Mouse 1 No 250/-

7 DELL Keyboard 1 No 450/-

8 450W Power supply SMPS 1 No 650/-

9
Atx Cabinet with SMPS
450W Zeb 1 No 1,850/-

10
SanDisk 16 GB Pen drive
(USB) 1 No 260/-

https://www.shareus.com/computer/how-to-build-a-pc-from-scratch-pc-build-guide.html#:%7E:text=3.-,How%20to%20assemble%20the%20components,-Once%20you%27ve%20got

Server and Web Application 8

Server and Web Application 9

Assembling the PC

Server and Web Application 10

Server and Web Application 11

Server and Web Application 12

Server and Web Application 13

Server and Web Application 14

Server and Web Application 15

Creating a Bootable USB drive for CentOS Installation

● Note: Require 16GB Pen drive (USB).

Step 1

● Note: Download CentOS installer file in a windows PC or laptop and follow the
process.

Download CentOS 7 IOS file from here.

Step 2

● Note: Download and Install PowerISO in a windows PC or laptop and follow the
process.

Download PowerISO v8.1(64- bit) from here.

Server and Web Application 16

Step 3

Flash CentOS ISO file to the USB Stick

1) Start PowerISO.

2) Insert the USB drive you intend to make bootable.

3) Choose the menu "Tools > Create Bootable USB Drive...".

4) In "Create bootable USB Drive" dialog, click "Browse" button to open the iso file for
CentOS.

5) Select the USB drive from the "Destination USB drive" list.

6) Choose the proper writing method. "Raw-write" is recommended.

7) Click "Start" button to start creating bootable USB drive for Linux.

Installing CentOS

Step 1

Boot the USB, Select Install CentOS 7 from the boot menu.

Server and Web Application 17

Step 2

Select the language and continue.

Step 3

Set the Date and Time/ Time zone.

Server and Web Application 18

Step 4

Select the Installation source.

- you can specify locally available installation media.

Step 5

Choose Installation Destination

- Select the I will configure partitioning checkbox and choose Done.
- If you do not have enough free space, you can reclaim disk space and instruct the

system to delete files.
- Total space – 250 GiB

Server and Web Application 19

- /Boot part - 2048 MiB size
- Swap - 16384 MiB
- / - remaining available space

Step 6

Software packages selection.

- Select the server with GUI option.

Server and Web Application 20

Step 7

Configure Network IP & Host Name.

1) Set the Hostname

- In our example, we will set
the Hostname as webapp.localhost.com, where webapp is the hostname
while localhost.com is the domain.

2) To add a static IPv4 address:

- Turn ON Ethernet.
- Select configure.
- Click the Add button to add a static IP address.
- Enter the information of your network domain. For example

- IP Address (192.168.0.10)
- Netmask Address (255.255.255.0)
- Gateway Address (192.168.0.254)
- DNS Servers Address (192.168.0.12)

- Click Save to confirm your changes.

Server and Web Application 21

Step 8

Define Root Password & User Creation

Server and Web Application 22

Step 9

Once done, remove any installation media and reboot your computer.

Server and Web Application 23

Installing Oracle Java JDK 17

Step 1

To give sudo access to a user

1. Open Terminal

- Using Shortcut (CTRL+ALT+T).
2. First, Switch to the root user.

sudo su
3. Use the visudo command to edit the configuration file:

[root@localhost ~]$ visudo
4. This will open /etc/sudoers for editing. To add a user and grant full sudo privileges,

add the following line:

[webapp] ALL=(ALL:ALL) ALL
5. Save and exit the file.

:wq

Step 2

1. First, switch to the root user.

[webapp@localhost ~]$ sudo su

2. Enter your root password.

3. Then, download Oracle Java JDK 17 using the wget command in the terminal.

[root@webapp ~]$ wget https://download.oracle.com/java/17/latest/jdk-17_lin
ux-x64_bin.rpm

4. And then, install Oracle Java JDK 17 using the rpm command.

[root@webapp ~]$ rpm -ivh jdk-17_linux-x64_bin.rpm

5. After the installation of Java, use the below command to verify the version.

Server and Web Application 24

[root@webapp ~]$ java –version

Output:

java version "17.0.1" 2021-10-19 LTS

Java(TM) SE Runtime Environment (build 17.0.1+12-LTS-39)

Java HotSpot(TM) 64-Bit Server VM (build 17.0.1+12-LTS-39, mixed mode, shar
ing)

Starting Resin for development

Step 1

1. Link /usr/java to the Java home or set environment variable JAVA_HOME.

[root@webapp ~]$ vi /etc/bashrc

or

[root@webapp ~]$ vim ~/.bashrc

2. Add the following line at the end:

export JAVA_HOME=/usr/java/jdk-17.0.2

3. Save and exit the file.

:wq

or

:q!

Step 2

1. Download the resin package and unzip it.

[webapp@localhost ~]$ wget -c http://caucho.com/download/resin-4.0.63.tar.g
z

[webapp@localhost ~]$ tar zxf resin-4.0.63.tar.gz

http://caucho.com/download/resin-4.0.63.tar.gz
http://caucho.com/download/resin-4.0.63.tar.gz

Server and Web Application 25

2. Navigate to resin directory.

[webapp@localhost ~]$ cd resin-4.0.63

3. Install openssl-devel package.

[webapp@localhost resin-4.0.63]$ yum install -y openssl-devel

4. Compile and install.

- Define the location of Resin and Set JAVA_HOME using the syntax
JAVA_HOME=path to JDK. For example, JAVA_HOME= /usr/java/jdk17.0.2/.

[webapp@localhost resin-4.0.63]$./configure --prefix=/home/webapp/resin-4.
0.63 --with-java-home=/usr/java/jdk-17.0.2 --enable-64bit --enable-64bit-jn
i --enable-64bit-plugin --enable-debug

[webapp@localhost resin-4.0.63]$ make

[webapp@localhost resin-4.0.63]$ make install

5. Use the following method to start the resin installed by compiling.

[webapp@localhost ~]$ /home/webapp/resin/bin/./resin.sh start

6. Finally, to verify that resin is working as expected, open http://localhost:8080 in
your browser, and you will see the default resin page.

Configuring firewall

Allow traffic on port 8080.

[root@webapp ~]$ firewall-cmd --zone=public --add-port=8080/tcp --permanent

Installing Node.js and npm from Node Source repository

1. Next, add the NodeSource repository to the system with:

[root@webapp ~]$ curl –sL https://rpm.nodesource.com/setup_14.x | bash -

http://localhost:8080/

Server and Web Application 26

2. The output will indicate you to use the following command if you want to install
Node.js and npm:

[root@webapp ~]$ yum install –y nodejs

3. Finally, verify the installed software with the commands:

[root@webapp ~]$ node –v

Your result should be similar to this:

v14.9.2

[root@webapp ~]$ npm –version

Your result should be similar to this:

6.13.6

Enabling MariaDB

1. We’ll start the daemon with the following command:

[webapp@localhost ~]$ sudo systemctl start mariadb

2. systemctl doesn’t display the outcome of all service management commands,
we’ll use the following command:

[webapp@localhost ~]$ sudo systemctl status mariadb

3. If MariaDB has successfully started, the output should contain "Active: active
(running)” and the final line should look something like:

Dec 01 19:06:20 centos-512mb-sfo2-01 systemd[1]: Started MariaDB database s
erver.

4. Next, let’s take a moment to ensure that MariaDB starts at boot, using
the systemctl enable command, which will create the necessary symlinks.

[webapp@localhost ~]$ sudo systemctl enable mariadb

Server and Web Application 27

Securing the MariaDB Server

1. MariaDB includes a security script to change some of the less secure default
options for things like remote root logins and sample users. Use this command to
run the security script:

[webapp@localhost ~]$ sudo mysql_secure_installation

2. The script will prompt you to set up the root user password.

Testing the Installation

We can verify our installation and get information about it by connecting with
the mysqladmin tool, a client that lets you run administrative commands. Use the
following command to connect to MariaDB as root (-u root), prompt for a password (-
p), and return the version.

[webapp@localhost ~]$ mysqladmin -u root -p version

You should see output similar to this:

Output

mysqladmin Ver 9.0 Distrib 5.5.50-MariaDB, for Linux on x86_64

Copyright (c) 2000, 2016, Oracle, MariaDB Corporation Ab, and others.

Server version 5.5.50-MariaDB

Protocol version 10

Connection Localhost via UNIX socket

UNIX socket /var/lib/mysql/mysql.sock

Uptime: 4 min 4 sec

Threads: 1 Questions: 42 Slow queries: 0 Opens: 1 Flush tables: 2 Open tables: 2
7 Queries per second avg: 0.172

This indicates the installation has been successful.

Server and Web Application 28

Login to MySQL

First, we’ll login to the MySQL server from the command line with the following
command:

[webapp@localhost ~]$ mysql -u root -p

Enter password:

Show (View) All MySQL Databases

1. To view the database, you’ve created simply issue the following command:

MariaDB [(none)]> SHOW DATABASES;

Your result should be similar to this:

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+
4 rows in set (0.00 sec)

2. To exit, type quit or exit and press [Enter].

Automate services start on reboot.

Enable MariaDB Service on Boot

[webapp@localhost ~]$ systemctl enable mariadb.service

Server and Web Application 29

Start resin on Boot.

Make an entry in /etc/rc.d/ with the start command.

nano rc.local

“su -webapp -c ‘/home/webapp/resin/bin/./resin.sh start’”

Install Google Chrome

1. First, download Google Chrome using the following command in the terminal:

[webapp@localhost ~]$ wget https://dl.google.com/linux/direct/google-chrome
-stable_current_x86_64.rpm

2. Then, use the yum command to install Chrome web browser:

[webapp@localhost ~]$ sudo yum localinstall google-chrome-stable_current_x8
6_64.rpm

3. You can start Google Chrome from GUI itself:

- Applications > Internet > Google Chrome

● NOTE: Make Google Chrome as your default browser

Server and Web Application 30

Build an interactive web application.

Server and Web Application 31

 Contents

Prerequisites

Aim

Software

Building the frontend of Restaurant table reservation web

application using React JS

Building the backend of Restaurant table reservation web

application using Spring Boot framework.

Deploying war file in the resin.

Creating a database for Restaurant table reservation web

application in PostgreSQL.

Testing the web application.

Additional Tasks

Server and Web Application 32

Prerequisites

Topic Resources
ReactJS Axios GET, POST, PUT and
DELETE Tutorial

Link

Spring Boot Tutorial Link

MariaDB Basic Tutorial Link

Aim

To learn the major components of web application architectures, build a fully functional
full-stack web application.

Software

1. Visual Studio Code
2. Apache NetBeans

https://www.javaguides.net/2020/08/reactjs-axios-get-post-put-and-delete-example-tutorial.html
https://www.tutorialspoint.com/spring_boot/spring_boot_tutorial.pdf
https://linuxhint.com/mariadb-tutorial/

Server and Web Application 33

Building the frontend of Restaurant table reservation web application
using React JS

Step 1

Install Visual Studio Code IDE

1) Import the Microsoft GPG key with this command.

sudo rpm –import https://packages.microsoft.com/keys/microsoft.asc

2) Create the repo file as below to enable the Visual Studio Code repository.

sudo nano /etc/yum.repos.d/vscode.repo

3) Add the below-given content in vscode.repo

[code]

name=Visual Studio Code

baseurl=https://packages.microsoft.com/yumrepos/vscode

enabled=1

gpgcheck=1

gpgkey=https://packages.microsoft.com/keys/microsoft.asc

4) Save and exit the vscode.repo

:wq
5) Install the latest version of Visual Studio Code with this command.

sudo yum install code

6) Now that VS Code is installed on your CentOS system now you can open it from
Applications -> Programming -> Visual Studio Code.

Step 2

Create a responsive Restaurant table reservation web application there will be an admin
interface and a customer interface. The customer interface is to register, sign in and

Server and Web Application 34

reserve a table as per the availability of the seats and the admin interface is to sign in and
manage table booking.

App Flow

Customers create an account → login → books a slot.

Admin login → view bookings → clear bookings

Step 3

Import the Project

1) Open Visual Studio. (Choose File > Open Folder)

2) Unzip the react.zip folder and select the unzip folder that contains the React
application.

3) The directory structure of the react project will look like this.

Server and Web Application 35

Getting Started

Inside public folder, index.html file that will serve as our app's starting point.

- The index.html file is the root of your application. This is the file the server reads,
and it is the file that your browser will display.

Next, inside src folder, index.js file is your JavaScript entry point to import dependencies,
and it will be run as soon as your app has loaded.

Building our App

There will be a main parent component. Each of the individual "pages" of app will be
separate components that feed into the main component.

Server and Web Application 36

Displaying the Initial Frame

Inside src folder, App.js will just be a component that contains UI elements for our
navigation header and an empty area for content to load in.

Adding CSS

Inside src folder, App.css is to style the app.

Creating our Content Pages

Our app will have six pages of content.

Home Page
Admin

- Admin Login Form
- Booking Page to list bookings and clear bookings.

Customer

- Customer Register Form
- Customer Login Form
- Booking Page to book a slot.

Step 4

Create Customerregister Component

Customerregister component is for customer register.

Server and Web Application 37

Inside src/Customerregister folder, open Customerregister.js file and write the
following code to create a simple sign-up form with name, phone, email, and password
input fields and a submit button that allows for user input and subsequently POSTs the
content to an API:

Inside the handleCustomerRegister function, you prevent the default action of the
form. Then update the state to the data input.

We have defined states for email, name, phone, and password for holding form data.

Note: The states can only be updated using set methods as shown in the methods.

We’re setting email, name, phone, and password to empty strings.

// Handling the customer registration form submission

 handleCustomerRegister = e => {

 e.preventDefault();

 const data = {

 email: this.state.email,

 name: this.state.name,

 phone: this.state.phone,

 password: this.state.password,

 };

 this.setState({

 email: '',

 name: '',

 phone: '',

 password: '',

 });

Using POST gives you the same response object with information that you can use inside
of a then call.

Server and Web Application 38

To complete the POST request, you first capture the data input. Then you add the input
along with the POST request, which will give you a response. You can then console.log
the response, which should show the data input in the form.

HTTP POST request to the server and add the data to the database.

 axios

 .post("http://localhost:8080/app/customerregister", data)

 .then(res => {

 if (res.data === 1) {

 alert("Registered Successfully");

 }

 }

)

 .catch(err => console.log(err));

 };

Inside the checkUser function, you prevent the default action of the form.

The user enters their email. If a user with the provided email already exists in the
database, an alert message is displayed right away.

// Handling the user already exists

checkUser = e => {

 e.preventDefault();

const value = e.target.value;

console.log(value)

var data = '{"email":"'+value+'"}';

console.log(data);

Server and Web Application 39

Using POST gives you the same response object with information that you can use inside
of a then call.

To complete the POST request, you first capture the data input. Then you add the input
along with the POST request, which will give you a response. You can then console.log
the response, which should show the data input in the form.

HTTP POST request to the server.

 axios

 .post("http://localhost:8080/app/checkuser",JSON.parse(data))

 .then(res => {

 if (res.data === 1) {

 alert("User Already Exists");

 }

 else{

 this.setState({email: value});

 this.validateField("email",value);

 }

 })

 .catch(err => console.log(err));

};

Now, we’ll call a validation after the user types in the field.

The setState method takes a callback function as a second argument, so let’s pass a
validation function to it.

// Handling the name change

 handleUserInput = (e) => {

 const name = e.target.name;

 const value = e.target.value;

Server and Web Application 40

 this.setState({ [name]: value },

 () => { this.validateField(name, value) });

 }

We do two different checks for the input fields. For the email field, we check it against a
regular expression to see if it’s an email.

For the phone field, we check if the length is exactly of 10 characters or not.

For the password field, we check if the length is a minimum of 8 characters or not.

When the field doesn’t pass the check, we set an error message for it and set its validity
to false.

Then we call setState to update the formErrors and the field validity.

// Validating the field

 validateField(fieldName, value) {

 let fieldValidationErrors = this.state.formErrors;

 let emailValid = this.state.emailValid;

 let phoneValid = this.state.phoneValid;

 let passwordValid = this.state.passwordValid;

 switch (fieldName) {

 case 'email':

 emailValid = value.match(/^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}$/i);

 fieldValidationErrors.email = emailValid ? '' : ' is invalid';

 break;

 case 'phone':

 phoneValid = value.length === 10;

 fieldValidationErrors.phone = phoneValid ? '' : ' is invalid';

 break;

Server and Web Application 41

 case 'password':

 passwordValid = value.length >= 8;

 fieldValidationErrors.password = passwordValid ? '' : ' must be atleast 8

characters';

 break;

 default:

 break;

 }

 this.setState({

 formErrors: fieldValidationErrors,

 emailValid: emailValid,

 phoneValid: phoneValid,

 passwordValid: passwordValid,

 }, this.validateForm);

 }

we pass the validateForm callback to set the value of formValid.

// Validating the form

 validateForm() {

 this.setState({ formValid: this.state.emailValid && this.state.phoneValid &&

this.state.passwordValid });

 }

errorClass is a method we can define as:

 errorClass(error) {

 return (error.length === 0 ? '' : 'has-error');

 }

Now when a field has an error, it has a red border around it.

Server and Web Application 42

Inside src/Customerregister folder, Customerregistererrors.js file is a stateless
functional component (or presentational component) which simply iterates through all
the form validation errors and displays them.

Inside src/Customerregister folder, Customerregister.css file is to style the form.

Step 5

Create Customerlogin Component

Customerlogin component is for customer login.

Inside src/Customerlogin folder, open Customerlogin.js file and write the following
code to create a simple sign-in form with email and password input fields and a submit
button that allows for user input and subsequently POSTs the content to an API:

Inside the handleCustomerLogin function, you prevent the default action of the form.
Then update the state to the data input.

We have defined states for email, and password for holding form data.

Note: The states can only be updated using set methods as shown in the methods.

We’re setting email and password to empty strings.

// Handling the customer login form submission

 handleCustomerLogin = e => {

Server and Web Application 43

 e.preventDefault();

 const data = {

 email: this.state.email,

 password: this.state.password,

 };

 this.setState({

 email: '',

 password: '',

 });

Using POST gives you the same response object with information that you can use inside
of a then call.

To complete the POST request, you first capture the data input. Then you add the input
along with the POST request, which will give you a response. You can then console.log
the response, which should show the data input in the form.

HTTP POST request to the server.

 axios

 .post("http://localhost:8080/app/customerlogin", data)

 .then(res => {

 if (res.data !== null)

 {

 console.log(res)

 this.props.history.push({pathname:'/Form',state :{

 customerid:res.data.CustomerID[0].id

 }});

 }

 else

 alert("EmailID or Password Incorrect")

Server and Web Application 44

 }

)

 .catch(err => console.log(err));

 };

Now, we’ll call a validation after the user types in the field.

The setState method takes a callback function as a second argument, so let’s pass a
validation function to it.

// Handling the name change

 handleUserInput = (e) => {

 const name = e.target.name;

 const value = e.target.value;

 this.setState({ [name]: value },

 () => { this.validateField(name, value) });

 }

We do two different checks for the input fields. For the email field, we check it against a
regular expression to see if it’s an email.

For the password field, we check if the length is a minimum of 8 characters or not.

When the field doesn’t pass the check, we set an error message for it and set its validity
to false.

Then we call setState to update the formErrors and the field validity.

// Validating the field

 validateField(fieldName, value) {

 let fieldValidationErrors = this.state.formErrors;

 let emailValid = this.state.emailValid;

 let passwordValid = this.state.passwordValid;

Server and Web Application 45

 switch (fieldName) {

 case 'email':

 emailValid = value.match(/^([\w.%+-]+)@([\w-]+\.)+([\w]{2,})$/i);

 fieldValidationErrors.email = emailValid ? '' : ' is invalid';

 break;

 case 'password':

 passwordValid = value.length >= 8;

 fieldValidationErrors.password = passwordValid ? '' : 'must be alteast 8

characters';

 break;

 default:

 break;

 }

 this.setState({

 formErrors: fieldValidationErrors,

 emailValid: emailValid,

 passwordValid: passwordValid,

 }, this.validateForm);

 }

we pass the validateForm callback to set the value of formValid.

// Validating the form

 validateForm() {

 this.setState({ formValid: this.state.emailValid && this.state.passwordValid });

 }

errorClass is a method we can define as:

 errorClass(error) {

 return (error.length === 0 ? '' : 'has-error');

 }

Server and Web Application 46

Now when a field has an error, it has a red border around it.

Inside src/Customerlogin folder, Customerloginerrors.js file is a stateless functional
component (or presentational component) which simply iterates through all the form
validation errors and displays them.

Inside src/Customerlogin folder, Customerlogin.css file is to style the form.

Step 6

Create Form Component

Form component is for booking a slot.

Inside src/Form folder, open Form.js file and write the following code to create a form
with name, phone, number of person and date & time input fields and a submit button
that allows for user input and subsequently POSTs the content to an API:

Inside the checkAvailability function, you prevent the default action of the form.

The user enters the number of persons. an event checks if booking slot is available or
not in the database, an alert message is displayed right away.

// Handling the booking slot availability

checkAvailability = e => {

 e.preventDefault();

const value = e.target.value;

Server and Web Application 47

console.log(value)

var data = '{"threshold":"'+value+'"}';

console.log(data);

Using POST gives you the same response object with information that you can use inside
of a then call.

To complete the POST request, you first capture the data input. Then you add the input
along with the POST request, which will give you a response. You can then console.log
the response, which should show the data input in the form.

HTTP POST request to the server.

axios

.post("http://localhost:8080/app/checkavailability",JSON.parse(data))

 .then(res => {

 if (res.data === 1) {

 alert("Slot not available");

 }

 else{

 this.setState({person: value});

 this.validateField("person",value);

 }

 })

 .catch(err => console.log(err));

};

Inside the handleBookings function, you prevent the default action of the form. Then
update the state to the data input.

We have defined states for email, name, phone, customerid, person, and date & time
for holding form data.

Server and Web Application 48

Note: The states can only be updated using set methods as shown in the methods.

We’re setting email, name, person, date & time, and phone to empty strings.

// Handling the booking form submission

 handleBookings = e => {

 e.preventDefault();

 const data = {

 email: this.state.email,

 name: this.state.name,

 person: this.state.person,

 datetime: this.state.datetime,

 phone: this.state.phone,

 customerid:this.props.location.state.customerid

 };

 console.log(data);

 this.setState({

 email: '',

 name: '',

 person: '',

 datetime: '',

 phone: '',

 });

Using POST gives you the same response object with information that you can use inside
of a then call.

To complete the POST request, you first capture the data input. Then you add the input
along with the POST request, which will give you a response. You can then console.log
the response, which should show the data input in the form.

Server and Web Application 49

HTTP POST request to the server and add the data to the database.

 axios

 .post("http://localhost:8080/app/createbooking", data)

 .then(res => {

 if (res.data === 1) {

 alert("Booked Successfully");

 }

 }

)

 .catch(err => console.log(err));

 };

Now, we’ll call a validation after the user types in the field.

The setState method takes a callback function as a second argument, so let’s pass a
validation function to it.

// Handling the name change

 handleUserInput = (e) => {

 const name = e.target.name;

 const value = e.target.value;

 this.setState({ [name]: value },

 () => { this.validateField(name, value) });

 }

We do two different checks for the input fields. For the email field, we check it against a
regular expression to see if it’s an email.

For the phone field, we check if the length is an exactly of 10 characters or not.

Server and Web Application 50

When the field doesn’t pass the check, we set an error message for it and set its validity
to false.

// Validating the field

 validateField(fieldName, value) {

 let fieldValidationErrors = this.state.formErrors;

 let emailValid = this.state.emailValid;

 let phoneValid = this.state.phoneValid;

 switch (fieldName) {

 case 'email':

 emailValid = value.match(/^([\w.%+-]+)@([\w-]+\.)+([\w]{2,})$/i);

 fieldValidationErrors.email = emailValid ? '' : ' is invalid';

 break;

 case 'phone':

 phoneValid = value.length === 10;

 fieldValidationErrors.phone = phoneValid ? '' : ' is invalid';

 break;

 default:

 break;

 }

 this.setState({

 formErrors: fieldValidationErrors,

 emailValid: emailValid,

 phoneValid: phoneValid,

 }, this.validateForm);

 }

Then we call setState to update the formErrors and the field validity.

we pass the validateForm callback to set the value of formValid.

Server and Web Application 51

// Validating the form

 validateForm() {

 this.setState({ formValid: this.state.emailValid && this.state.phoneValid });

 }

errorClass is a method we can define as:

 errorClass(error) {

 return (error.length === 0 ? '' : 'has-error');

 }

Now when a field has an error, it has a red border around it.

Inside src/Form folder, FormErrors.js file is a stateless functional component (or
presentational component) which simply iterates through all the form validation errors
and displays them.

Inside src/Form folder, Form.css file is to style the form.

Step 7

Create Login Component

Login component is for admin login.

Server and Web Application 52

Inside src/Login folder, open Login.js file and write the following code to create a
simple sign-in form with email and password input fields and a submit button that
allows for user input and subsequently POSTs the content to an API:

Inside the handleLogin function, you prevent the default action of the form. Then
update the state to the data input.

We have defined states for username, and password for holding form data.

Note: The states can only be updated using set methods as shown in the methods.

We’re setting username and password to empty strings.

// Handling the admin login form submission

 handleLogin = e => {

 e.preventDefault();

 const data = {

 username: this.state.username,

 password: this.state.password,

 };

 this.setState({

 username: '',

 password: '',

 });

Using POST gives you the same response object with information that you can use inside
of a then call.

To complete the POST request, you first capture the data input. Then you add the input
along with the POST request, which will give you a response. You can then console.log
the response, which should show the data input in the form.

HTTP POST request to the server.

Server and Web Application 53

 axios

 .post("http://localhost:8080/app/login", data)

 .then(res => {

 if (res.data === 1)

 {

 console.log(res)

 this.props.history.push('/Table');

 }

 else

 alert("Username or Password Incorrect")

 }

)

 .catch(err => console.log(err));

 };

Now, we’ll call a validation after the user types in the field.

The setState method takes a callback function as a second argument, so let’s pass a
validation function to it.

// Handling the name change

 handleUserInput = (e) => {

 const name = e.target.name;

 const value = e.target.value;

 this.setState({ [name]: value },

 () => { this.validateField(name, value) });

 }

We do two different checks for the input fields. For the email field, we check it against a
regular expression to see if it’s an email.

Server and Web Application 54

For the password field, we check if the length is a minimum of 8 characters or not.

When the field doesn’t pass the check, we set an error message for it and set its validity
to false.

// Validating the field

 validateField(fieldName, value) {

 let fieldValidationErrors = this.state.formErrors;

 let usernameValid = this.state.usernameValid;

 let passwordValid = this.state.passwordValid;

 switch (fieldName) {

 case 'username':

 usernameValid = value.match(/^([\w.%+-]+)@([\w-]+\.)+([\w]{2,})$/i);

 fieldValidationErrors.username = usernameValid ? '' : ' is invalid';

 break;

 case 'password':

 passwordValid = value.length >= 8;

 fieldValidationErrors.password = passwordValid ? '' : ' is invalid';

 break;

 default:

 break;

 }

 this.setState({

 formErrors: fieldValidationErrors,

 usernameValid: usernameValid,

 passwordValid: passwordValid,

 }, this.validateForm);

 }

Server and Web Application 55

Then we call setState to update the formErrors and the field validity.

we pass the validateForm callback to set the value of formValid.

// Validating the form

 validateForm() {

 this.setState({ formValid: this.state.usernameValid && this.state.passwordValid

});

 }

errorClass is a method we can define as:

 errorClass(error) {

 return (error.length === 0 ? '' : 'has-error');

 }

Now when a field has an error, it has a red border around it.

Inside src/Login folder, LoginErrors.js file is a stateless functional component (or
presentational component) which simply iterates through all the form validation errors
and displays them.

Inside src/Login folder, Login.css file is to style the form.

Step 8

Create Home Component

Server and Web Application 56

Home component is for home page.

Inside src/Home folder, Home.js file

Inside src/Home folder, Home.css file is to style the form.

Step 9

Create Table Component

Table component is for listing bookings and clear bookings.

Inside src/Table folder, open Table.js file and add write the following code to list
bookings, subsequently GET the content from an API and to clear bookings that allows
for user input, subsequently POSTs the content to an API:

You use axios.get(url) with a URL from an API endpoint to get a promise which
returns a response object.

// Handling the booking list

 async getUsersData(){

 const res = await axios.get("http://localhost:8080/app/viewbooking")

 console.log(res.data)

 this.setState({loading:false, users: res.data})

 }

Inside the clearBookings function, you prevent the default action of the form.

Server and Web Application 57

Using POST gives you the same response object with information that you can use inside
of a then call.

HTTP POST request to the server.

// Handling the clear booking

 clearBookings = e => {

 e.preventDefault();

 axios

 .post("http://localhost:8080/app/clearbookings")

 .then(res => {

 if (res.data === 1) {

 alert("Cleared Bookings");

 this.getUsersData()

 }

 }

)

 .catch(err => console.log(err));

};

Configure React Router

Inside src folder, In Routes.js file React Router enables the navigation among views of
various components in a React Application.

Import the history package.

Inside src folder, History.js file.
The history library lets you easily manage session history anywhere JavaScript runs.

Step 9

Run the React App

Server and Web Application 58

Open the command prompt, go to the directory of the React JS project folder, execute
the following command.

Using npm start

[webapp@localhost ~]$ /home/webapp/reactapp/npm start

This will run the application on the port, localhost:3000.

Building the backend of Restaurant table reservation web application

using Spring Boot framework.

Step 1

Install Apache NetBeans IDE

To install Apache NetBeans, simply use the following command:

[webapp@localhost ~]$ sudo yum install epel-release

[webapp@localhost ~]$ sudo yum install snapd

[webapp@localhost ~]$ sudo systemctl enable --now snapd.socket

[webapp@localhost ~]$ sudo ln -s /var/lib/snapd/snap /snap

[webapp@localhost ~]$ sudo snap install netbeans --classic

Step 2

A Java Spring project requires a set of libraries and packages that enable the requested
features. For our project, we select Maven as the project management tool. Maven
helps to build and manage your Java project. It creates a so-called POM (Project-Object-
Model) with all the information and configuration details of the project, which is saved
in a pom.xml file.

Server and Web Application 59

Step 3

Import the Project

1) Open Apache NetBeans, select File › Open Project

2) Unzip the SpringApp.zip folder and select the unzip folder containing the Maven
project you want to import.

3) Click Open Project to complete the process.

Server and Web Application 60

4) The directory structure of the spring boot project will look like this.

Step 4

Create POJOs (plain old Java object) for Admin, Customer, Booking and Hotel

Customer.java

In the Projects window, Inside project file > source packages > com.spring.app.model.
Open Customer.java file and write the following code.

1) Inside Customer class, Create private fields with their data types for id, name, email,
phone, and password.

private int id;

private String name;

Server and Web Application 61

private String email;

private String phone;

private String password;

2) Create an empty constructor (Hibernate, which handles the JPA requires an empty
constructor).

public Customer() {}

3) Create a constructor with the arguments name, email, phone, password, and id.
Write the following code.

public Customer (String name, String email, String phone, String password, int

id) {

 this.id = id;

 this.name = name;

 this.email = email;

 this.phone = phone;

 this.password = password;

 }

4) Create accessor methods (i.e., getter and setter methods) for this field.

- The IDE can create accessor methods for you. In the editor, right-click on `value`
and choose Insert Code (or press Alt-Insert). In the popup menu, choose Getter
and Setter.

Server and Web Application 62

- In the dialog that displays, select all the fields, then click Generate. The getValue()
and setValue() methods are added to the Customer class.

Step 5

Admin.java

In the Projects window, Inside project file > source packages > com.spring.app.model.
Open Admin.java file and write the following code.

1) Inside Admin class, Create private fields with their data types for username, and
password.

private String username;

private String password;

2) Create an empty constructor (Hibernate, which handles the JPA requires an empty
constructor).

public Admin () {}

3) Create a constructor with the arguments name, email, phone, password, and id.
Write the following code.

Server and Web Application 63

public Admin (String username, String password) {

 this.username = username;

 this.password = password;

 }

4) Create accessor methods (i.e., getter and setter methods) for this field.

- The IDE can create accessor methods for you. In the editor, right-click on `value`

and choose Insert Code (or press Alt-Insert). In the popup menu, choose Getter
and Setter.

- In the dialog that displays, select all the fields, then click Generate. The getValue()
and setValue() methods are added to the Admin class.

Step 6

Booking.java

In the Projects window, Inside project file > source packages > com.spring.app.model.
Open Booking.java file and write the following code.

1) Inside Booking class, create private fields with their data types for email, phone,
name, person, datetime, id, and customerid.

Server and Web Application 64

private String email;

private String phone;

private String name;

private int person;

private String datetime;

private int id;

private int customerid;

2) Create an empty constructor (Hibernate, which handles the JPA requires an empty
constructor).

public Booking() {}

3) Create a constructor with the arguments email, phone, name, person, datetime, id
and customerid. Write the following code.

public Booking(String email, String phone, String name, int person, String

datetime, int id, int customerid) {

 this.email = email;

 this.phone = phone;

 this.name = name;

 this.person = person;

 this.datetime = datetime;

 this.id = id;

 this.customerid = customerid;

 }

4) Create accessor methods (i.e., getter and setter methods) for this field.

-

Server and Web Application 65

- The IDE can create accessor methods for you. In the editor, right-click on `value`

and choose Insert Code (or press Alt-Insert). In the popup menu, choose Getter
and Setter.

- In the dialog that displays, select all the fields, then click Generate. The getValue()
and setValue() methods are added to the Booking class.

Step 7

Hotel.java

In the Projects window, Inside project file > source packages > com.spring.app.model.
Open Hotel.java file and write the following code.

1) Inside Hotel class, create private fields with their data types for threshold.

private int threshold;

2) Create an empty constructor (Hibernate, which handles the JPA requires an empty
constructor).

public Hotel() {}

3) Create a constructor with the argument threshold. Write the following code.

Server and Web Application 66

public Hotel(int threshold) {

 this.threshold = threshold;

 }

4) Create accessor methods (i.e., getter and setter methods) for this field.

- The IDE can create accessor methods for you. In the editor, right-click on `value`

and choose Insert Code (or press Alt-Insert). In the popup menu, choose Getter
and Setter.

- In the dialog that displays, select all the fields, then click Generate. The getValue()
and setValue() methods are added to the Hotel class.

Step 8

Create Spring Boot API Controller for admin and customer.

controller package is used to implement a Spring Boot RestAPI controller to handle all
incoming requests (post/get/put/delete) and response to rest-client.

Server and Web Application 67

Admin

- Handling admin login
- List bookings
- Clear bookings

Customer

- Handling customer login
- Handling customer register
- Book a Slot
- Check booking availability.
- Check user already exists.

Handling admin login

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

 @CrossOrigin(origins = "*")

 @RequestMapping(value = "/login", method = RequestMethod.POST)

 public int adminLogin(@RequestBody Admin admin) {

 int result = BEObj.adminLogin(admin);

 return result;

 }

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping("/login") annotation sets the base path to the resource endpoints in
the controller as /login.

@RequestMapping(method = RequestMethod.POST is used to map HTTP POST request to
the mapped controller methods. We used it to send username and password of a
merchant.

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/login” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes

Server and Web Application 68

it to the adminLogin method.

List bookings

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

 @CrossOrigin(origins = "*")

 @RequestMapping(value = "/viewbooking", method = RequestMethod.GET)

 public List<Booking> viewBooking() {

 List<Booking> result = BEObj.viewBooking();

 return result;

 }

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping("/viewbooking") annotation sets the base path to the resource
endpoints in the controller as /login.

@RequestMapping(method = RequestMethod.GET), and is used to map HTTP GET
requests to the mapped controller methods. We used it to return all the bookings.

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/viewbookings” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes
it to the viewBooking method.

Clear bookings

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

 @CrossOrigin(origins = "*")

 @RequestMapping(value = "/clearbookings", method = RequestMethod.POST)

 public int clearBookings() {

 int result = BEObj.clearBookings();

Server and Web Application 69

 return result;

 }

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping("/clearbookings") annotation sets the base path to the resource
endpoints in the controller as /clearbookings.

@RequestMapping(method = RequestMethod.POST is used to map HTTP POST request to
the mapped controller methods. We used it to clear bookings.

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/clearbookings” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes
it to the clearBookings method.

Handling customer login

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

 @CrossOrigin(origins = "*")

 @RequestMapping(value = "/customerlogin", method = RequestMethod.POST)

 public JSONObject customerLogin(@RequestBody Customer customer) {

 JSONObject result = BEObj.customerLogin(customer);

 return result;

 }

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping("/customerlogin") annotation sets the base path to the resource
endpoints in the controller as /customerlogin.

@RequestMapping(method = RequestMethod.POST is used to map HTTP POST request to
the mapped controller methods. We used it to send username and password of a
merchant.

Server and Web Application 70

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/customerlogin” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes
it to the customerLogin method.

Handling customer register

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

 @CrossOrigin(origins = "*")

 @RequestMapping(value = "/customerregister", method = RequestMethod.POST)

 public int customerRegister(@RequestBody Customer customer) {

 int result = BEObj.customerRegister(customer);

 return result;

 }

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping("/customerregister") annotation sets the base path to the resource
endpoints in the controller as /customerregister.

@RequestMapping(method = RequestMethod.POST is used to map HTTP POST request to
the mapped controller methods. We used it to send details of a customer.

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/customerregister” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes
it to the customerRegister method.

Book a Slot

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

 @CrossOrigin(origins = "*")

Server and Web Application 71

 @RequestMapping(value = "/createbooking", method = RequestMethod.POST)

 public int createBooking(@RequestBody Booking booking) {

 int result = BEObj.createBooking(booking);

 return result;

 }

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping("/createbooking") annotation sets the base path to the resource
endpoints in the controller as /createbooking.

@RequestMapping(method = RequestMethod.POST is used to map HTTP POST request to
the mapped controller methods. We used it to send details of bookings.

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/createbooking” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes
it to the createBooking method.

Check booking availability.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

 @CrossOrigin(origins = "*")

 @RequestMapping(value = "/checkavailability", method = RequestMethod.POST)

 public int checkAvailability(@RequestBody Hotel hotel) {

 int result = BEObj.checkAvailability(hotel.getThreshold());

 return result;

 }

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping("/checkavailability") annotation sets the base path to the
resource endpoints in the controller as /checkavailability.

Server and Web Application 72

@RequestMapping(method = RequestMethod.POST is used to map HTTP POST request to
the mapped controller methods. We used it to send threshold of hotel.

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/checkavailability” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes
it to the checkAvailability method.

Check user already exists.

 @CrossOrigin(origins = "*")

 @RequestMapping(value = "/checkuser", method = RequestMethod.POST)

 public int checkUser(@RequestBody String email) {

 int result = BEObj.checkUser(email);

 return result;

 }

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping("/checkuser") annotation sets the base path to the resource
endpoints in the controller as /checkuser.

@RequestMapping(method = RequestMethod.POST is used to map HTTP POST request to
the mapped controller methods. We used it to send email of a single customer.

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/checkuser” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes
it to the checkUser method.

Step 9

Implement a method to handle admin login.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

Server and Web Application 73

String s = "select count(*) from admin where admusername=? AND admpassword=?";

 int count = 0;

 try {

 count = jdbc.queryForObject(s, new Object[]{admin.getUsername(),

admin.getPassword()}, Integer.class);

 } catch (Exception e) {

 System.out.println("Exception" + e);

 count = 0;

 }

 if (count == 1) {

 return SUCCESS;

 } else {

 return FAILURE;

 }

Inside adminLogin method is where you create the query to count data values from the
admin table.

The SQL SELECT statement can be used along with COUNT (*) function to count of all
rows present in the admin table and SQL query that returns a value object like String
then you can use the queryForObject() method of JdbcTempalte class. This method
takes an argument about what type of class query will return and then convert the
result into that object and returns it to the caller.

Implement a method to list bookings.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

String s = "select bkgid AS id, bkgname AS name, bkgemail AS email, bkgphone AS

phone, bkgfromdatetime AS datetime, bkgnoofperson AS person from booking";

 List<Booking> bklist;

 try {

Server and Web Application 74

 bklist = jdbc.query(s, new BeanPropertyRowMapper(Booking.class));

 } catch (Exception e) {

 System.out.println("Exception" + e);

 bklist = null;

 }

 return bklist;

Inside viewBookings method is where you create the query to return a list of bookings
from the booking table.

The SQL string contains a query to select all the booking details from the booking table
and if your SQL query is going to return a List of objects instead of just one object then
you need to use the query () method of JdbcTempalte. These methods provide to
convert the result to a custom object. For instance, the simplest way to query and
handle results is via the query (String, RowMapper) method. This method uses
RowMapper to map the returned row to an object.

Implement a method to clear bookings.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

String s = "delete from booking";

 int resultRec = 0;

 try {

 resultRec = jdbc.update(s);

 } catch (Exception e) {

 System.out.println("Exception" + e);

 resultRec = 0;

 }

 if (resultRec == 1) {

 return SUCCESS;

 } else {

 return FAILURE;

Server and Web Application 75

 }

Inside clearBookings method is where you create the query to delete bookings from the
booking table.

Create a SQL string to delete all the bookings from booking table. Call the update
method of JdbcTemplate and pass the string to be bound to the query.

Implement a method to handle customer login.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

String s = "select cstid AS id from customer where cstemail='" + customer.getEmail()

+ "' AND cstpassword='" + customer.getPassword() + "'";

 List customerlist;

 try {

 customerlist = jdbc.query(s, new BeanPropertyRowMapper(Customer.class));

 JSONObject json = new JSONObject();

 if (!customerlist.isEmpty()) {

 json.put("CustomerID", customerlist);

 System.out.println("json = " + json);

 return json;

 }

 } catch (Exception e) {

 System.out.println("Exception" + e);

 customerlist = null;

 }

 return null;

Inside customerLogin method is where you create the query to return customer details
as list from the customer table.

The SQL s string contains a query to select the customer ID by email and password from
the customer table and if your SQL query is going to return a List of objects instead of

Server and Web Application 76

just one object then you need to use the query () method of JdbcTempalte. These
methods provide to convert the result to a custom object. For instance, the simplest
way to query and handle results is via the query (String, RowMapper) method. This
method uses RowMapper to map the returned row to an object.

Implement a method to handle customer register.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

String s = "insert into

customer(cstname,cstemail,cstphone,cstpassword)values(?,?,?,?)";

 int insert = 0;

 try {

 insert = jdbc.update(s, customer.getName(), customer.getEmail(),

customer.getPhone(), customer.getPassword());

 } catch (Exception e) {

 System.out.println("Exception" + e);

 insert = 0;

 }

 if (insert == 1) {

 return SUCCESS;

 } else {

 return FAILURE;

 }

Inside customerRegister method is where you create the query to create a customer in
the customer table.

The update method provided by JdbcTemplate can be used for insert, update, and
delete operations.

The SQL string is used to perform a single insert operation. Here '?' means it acts as the

parameter which we need to pass while executing the query. Now to execute the query,

Server and Web Application 77

we have used the JdbcTemplate update() method, which takes the query as an
argument, and other than the query there are 4 values that correspond to 4 '?'
respectively.

Implement a method to create bookings.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

String s = "insert into

booking(bkgname,bkgemail,bkgphone,bkgnoofperson,bkgfromdatetime,bkgcstid)values(?,?,

?,?,?,?)";

 int insert = 0;

 try {

 insert = jdbc.update(s, booking.getName(), booking.getEmail(),

booking.getPhone(), booking.getPerson(), booking.getDatetime(),

booking.getCustomerid());

 } catch (Exception e) {

 System.out.println("Exception" + e);

 insert = 0;

 }

 if (insert == 1) {

 return SUCCESS;

 } else {

 return FAILURE;

 }

Inside createBooking method is where you create the query to create a booking in the
booking table.

The update method provided by JdbcTemplate can be used for insert, update, and
delete operations.

The SQL string is used to perform a single insert operation. Here '?' means it acts as the

Server and Web Application 78

parameter which we need to pass while executing the query. Now to execute the query,
we have used the JdbcTemplate update() method, which takes the query as an
argument, and other than the query there are 6 values that correspond to 6 '?'
respectively.

Implement a method to check booking availability.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

 String s = "select htlthreshold AS threshold from hotel";

 List<Hotel> thresholdlist = jdbc.query(s, new

BeanPropertyRowMapper(Hotel.class

));

 int availability = thresholdlist.get(0).getThreshold();

 System.out.println("availability = " + availability);

 String t = "select sum(bkgnoofperson) AS person from booking";

 long thresholddblist = 0;

 if (jdbc.queryForObject(t, Long.class) != null) {

 thresholddblist = jdbc.queryForObject(t, Long.class);

 }

 int reserved = 0;

 if (thresholddblist > 0) {

 reserved = Integer.parseInt(thresholddblist + "");

 System.out.println("reserved = " + reserved);

 }

 int totalperson = reserved + threshold;

 System.out.println("totalperson = " + totalperson);

 if (availability >= totalperson) {

 return FAILURE;

 } else {

Server and Web Application 79

 return SUCCESS;

 }

Inside checkAvailability method is where you create the query to create check
availability in the booking table.

The SQL s string contains a query to select the htlthreshold from the hotel table and if
your SQL query is going to return a List of objects instead of just one object then you
need to use the query () method of JdbcTempalte. These methods provide to convert
the result to a custom object. For instance, the simplest way to query and handle
results is via the query (String, RowMapper) method. This method uses RowMapper to
map the returned row to an object.

The SQL t string contains a query to select the bkgnoofperson from the booking table
and SQL query that returns a value object like String then you can use the
queryForObject() method of JdbcTempalte class. This method takes an argument about
what type of class query will return and then convert the result into that object and
returns it to the caller.

Implement a method to check user already exists.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

 JSONParser parser = new JSONParser();

 JSONObject emailObj = null;

 try {

 emailObj = (JSONObject) parser.parse(email);

 } catch (Exception e) {

 e.printStackTrace();

 }

 String InputEmail = emailObj.get("email").toString();

 String s = "select count(*) from customer WHERE cstemail=?";

 int count = jdbc.queryForObject(s, new Object[]{InputEmail}, Integer.class);

 System.out.println("count = " + count);

 if (count == 1) {

Server and Web Application 80

 return SUCCESS;

 } else {

 return FAILURE;

 }

Inside checkUser method is where you create the query to create a check user already
exists in the customer table.

The SQL SELECT statement can be used along with COUNT (*) function to count of all
rows present in the customer table and SQL query that returns a value object like String
then you can use the queryForObject() method of JdbcTempalte class. This method
takes an argument about what type of class query will return and then convert the
result into that object and returns it to the caller.

Configure pom.xml.

In the Projects window, Inside project file > Project Files. Open pom.xml file.

For handling the web-request and doing CRUD operations with MariaDB database, we
need the supporting of 3 Spring Boot dependencies: spring-boot-starter-
web and spring-boot-starter-data-jdbc, mariadb.

Configure Spring Data source.

application. Properties is used to add the Spring Boot application's configurations
such as: database configuration.

In the Projects window, Inside project file > other sources > src/main/resources >
default package. Open application. properties file.

Since we’re using MariaDB as our database, we need to configure the database URL,
username, and password so that Spring can establish a connection with the database on
startup.

spring.datasource.url=jdbc:mariadb://localhost:3306/<MariaDB database name>

spring.datasource.username=< MariaDB username>

spring.datasource.password=< MariaDB password>

spring.datasource.driver-class-name=org.mariadb.jdbc.Driver

Server and Web Application 81

Step 9

Run the Spring Boot Project file.

Right-click on the project file and click on “Clean and Build”.

Deploying war file in the resin.

1) Go to your spring boot project directory and inside target folder you will get war
file.

2) Copy the .war file (E.g.: webapp.war) to [webapp@localhost ~]
$/home/webapp/resin/webapps

3) Start the resin server as root user.

4) switch to the root user.

[webapp@localhost ~]$ sudo su

5) Run [root@localhost ~]$ /home/webapp/resin/bin/./resin.sh start

Your .war file will be extracted automatically to a folder that has the same name
(without extension) (E.g.: webapp)

Creating a database for Restaurant table reservation web application
in PostgreSQL.

Create a webapp database and Create admin, customer, hotel and booking table,
populate the table with data, retrieve and store data for future use, or delete if needed.

Step 1

Database Design

Server and Web Application 82

Step 2

Start the MariaDB shell.

1) At the command prompt, run the following command to launch the MariaDB shell
and enter it as the root user:

[root@webapp ~]$ /usr/bin/mysql -u root -p

2) When you’re prompted for a password, enter the one that you set at installation,
or if you haven’t set one, press Enter to submit no password.

The following shell prompt should appear:

MariaDB [(none)]>

Server and Web Application 83

Step 3

Create a database called webapp:

MariaDB [(none)]> CREATE SCHEMA webapp;

MariaDB [(none)]> USE webapp;

Step 4

Create a table called admin:

MariaDB [webapp]> CREATE TABLE admin (

admid INT NOT NULL AUTO_INCREMENT,

admusername VARCHAR(50) NOT NULL,

admpassword VARCHAR(40) NOT NULL,

PRIMARY KEY (admid)

);

In the admin table “admid”, “admusername”, “admpassword” represents the name of
the columns. INT and VARCHAR are data types and NOT NULL defines the column
constraint, NOT NULL means no acceptance of NULL values in that column. Here,
“admid” is defined as the Primary Key Column. The primary key column is used for
distinguishing a unique row in a table. AUTO_INCREMENT to create a column whose
value can be set automatically from a simple counter. You can only use
AUTO_INCREMENT on a column with an integer type. The column must be a key, and
there can only be one AUTO_INCREMENT column in a table.

Server and Web Application 84

Step 5

Create a table called customer:

CREATE TABLE customer (

cstid INT NOT NULL AUTO_INCREMENT,

cstname VARCHAR(50) NOT NULL,

cstemail VARCHAR(40) NOT NULL,

cstphone BIGINT(10) NOT NULL,

cstpassword VARCHAR(40) NOT NULL,

PRIMARY KEY (cstid),

CONSTRAINT uniqueemail UNIQUE (cstemail)

);

In the admin table “cstid”, “cstname”, “cstemail”, “cstphone”, “cstpassword”
represents the name of the columns. INT, BIGINT and VARCHAR are data types and NOT
NULL defines the column constraint, NOT NULL means no acceptance of NULL values in
that column. Here, “cstid” is defined as the Primary Key Column. The primary key
column is used for distinguishing a unique row in a table. AUTO_INCREMENT to create a
column whose value can be set automatically from a simple counter. You can only use
AUTO_INCREMENT on a column with an integer type. The column must be a key, and
there can only be one AUTO_INCREMENT column in a table. UNIQUE to specify that all
values in the cstemail column must be distinct from each other. For UNIQUE indexes,
you can specify a name for the constraint, using the CONSTRAINT keyword. That name
will be used in error messages.

Server and Web Application 85

Step 6

Create a table called booking:

CREATE TABLE booking (

bkgid INT NOT NULL AUTO_INCREMENT,

bkgname VARCHAR(50) NOT NULL,

bkgemail VARCHAR(40) NOT NULL,

bkgphone BIGINT(10) NOT NULL,

bkgfromdatetime DATETIME,

bkgnoofperson BIGINT NOT NULL,

bkgcstid INT NOT NULL,

PRIMARY KEY (bkgid, bkgcstid),

foreign key(bkgcstid) references customer(cstid)

);

In the booking table “bkgid”, “bkgname”, “bkgemail”, “bkgphone”, “bkgfromdatetime”,
“bkgnoofperson”, “bkgcstid” represents the name of the columns. INT, BIGINT and
VARCHAR are data types and NOT NULL defines the column constraint, NOT NULL
means no acceptance of NULL values in that column. Here, “bkgid”, “bkgcstid” are
defined as the Primary Key Column. The primary key column is used for distinguishing a
unique row in a table. AUTO_INCREMENT to create a column whose value can be set
automatically from a simple counter. You can only use AUTO_INCREMENT on a column
with an integer type. The column must be a key, and there can only be one
AUTO_INCREMENT column in a table. The bkgcstid column is the foreign key column
that references the cstid column of the customer table.

Server and Web Application 86

Step 7

Create a table called hotel:

CREATE TABLE hotel (

htlid INT NOT NULL AUTO_INCREMENT,

htlname VARCHAR(50) NOT NULL,

htladdress VARCHAR(40) NOT NULL,

htlcapacity BIGINT NULL,

htlthreshold BIGINT NOT NULL,

PRIMARY KEY (htlid)

);

In the hotel table “htlid”, “htlname”, “htladdressl”, “htlcapacity”, “htlthreshold”
represents the name of the columns. INT, BIGINT and VARCHAR are data types and NOT
NULL defines the column constraint, NOT NULL means no acceptance of NULL values in
that column. Here, “htlid” is defined as the Primary Key Column. The primary key
column is used for distinguishing a unique row in a table. AUTO_INCREMENT to create a
column whose value can be set automatically from a simple counter. You can only use
AUTO_INCREMENT on a column with an integer type. The column must be a key, and
there can only be one AUTO_INCREMENT column in a table.

Step 8

1) Insert a record into the admin table.

INSERT INTO admin (admusername, admpassword) VALUES ('admin@gmail.com',
'admin@123');

Server and Web Application 87

The ‘admin’ is an already created table. Now we are adding a new row of records under
the respective columns with the corresponding values: ‘admin@gmail.com’ and
‘admin@123.

2) Verify the insertion, using the SELECT statement.
SELECT * FROM admin;

Step 9

1) Insert a record into the hotel table.

INSERT INTO hotel (htlname, htladdress, htlcapacity, htlthreshold)
VALUES ('Grill box', 'Adyar', 50, 10);

The ‘hotel’ is an already created table. Now we are adding a new row of records under
the respective columns with the corresponding values: ‘Grill Box’, ‘Adyar’ 50 and 10.

2) Verify the insertion, using the SELECT statement.
SELECT * FROM hotel;

Testing the web application.
Perform functional tests and validate if everything works according to requirements.

Run the React App

1) Open the command prompt, on the root of the React JS project, execute the

following command.

Using npm start

[webapp@localhost ~]$ /home/webapp/reactapp/npm start

Server and Web Application 88

Start the resin server.

1) switch to the root user.

[webapp@localhost ~]$ sudo su

2) Run [root@localhost ~] $/home/webapp/resin/bin/./resin.sh start

Additional Tasks

1) Allocating Restaurant Table & Time slots

2) Multiple restaurants listing

3) Multiple restaurants management

