“THE

BU/LD |’tm

CLUB research
park

Build a server and an interactive web

application.

Server and Web Application

BU/LD
juiis resc'a’g??h ®
park \ "/

Introduction to | Part- A: Build a server.

the course:
. e This course takes you through the process of assembling a PC,

provides step-by-step guidance on how to assemble a server
with the components such as the motherboard, processor, and
RAM that make up the system unit, as well as how to install the
operating system to complete a fully functioning computer,
install necessary software for developing web application. So,
if you’ve ever wondered what it takes to build your own PC, join
the course for this adventure.

Part- B: Build an interactive web application.

e This course will also help you to build an interactive web
application using React as frontend, Spring boot as backend
and MariaDB database. Front-end side is made with React,
React Router, Axios. The back-end server uses Spring Boot with
Spring Web MVC for REST APIs and Spring Data JDBC for
interacting with MariaDB database.

What does this | Part- A: Build a server.

course aim to - . . '
e The objective of this course is to provide knowledge about

= : :
achieve: assembling a PC and setting up a web server.

Part- B: Build an interactive web application.

e You'll learn the major components of web application
architectures, build a fully functional full-stack web application.

What is being | Part- A: Build a server.
built in this
course:

e Build a computer from ground up, and then install the
necessary operating system and packages for web application.

Part- B: Build an interactive web application.

Server and Web Application 2

im, (o
rese% racrk k"(':LEL‘JLD}

e Build a responsive Restaurant table reservation web
application with following features:

o

O O O O O

Customer Login & Registration
Book a Slot

Admin Login

View Bookings

Clear Bookings

Check Booking Availability

How is it being
tested:

Verify the installed java version.

Verify with the default resin web page.

Verify the installed node and npm version.

View the MariaDB test database.

Test the web application on the local environment.

Course
Prerequisites

Understanding of JavaScript programming basics.

Basic Java programming.

Knowledge on SQL.

Server and Web Application

Build a server.

Server and Web Application 4

BU/LD
CLUB resé’g%h [IN "EN%DN
park .
Contents

Prerequisites

Aim

Components

Assembling the PC

Creating a Bootable CentOS USB Stick
Installing CentOS

Installing Oracle Java JDK 17

Starting Resin for development.
- Configuring firewall.

Installing Node.js and npm from Node Source repository.

Enabling MariaDB
- Securing the MariaDB Server
- Testing the Installation
- Login to MySQL

- Show (View) All MySQL Databases

Server and Web Application

Automate Services start on reboot.

- Enable MariaDB Service on Boot
- Start resin on Boot.

Installing Google Chrome

Server and Web Application

It

resea
P

BUI/LD
CLUB rescla’zgmh @
park \ "/

Prerequisites

Topic Resources
PC Build Guide Link

Aim

The objective of this course is to provide knowledge about assembling a PC and setting
up a dedicated web server.

Components

S.no | Components Quantity | Cost
1 Motherboard 310 MH 1 No 5,550/-
2 Intel 13 8th Gen CPU 1 No 5,050/-
3 8GB DDR RAM 1 No 1,800/-
4 1 TB HDD Drive 1 No 3,050/-
5 ZEBRONICS 18.5” Monitor 1 No 4499/-
6 DELL Mouse 1 No 250/-
7 DELL Keyboard 1 No 450/-
8 450W Power supply SMPS 1 No 650/-
. Atx Cabinet with SMPS

450W Zeb 1 No 1,850/-
6 SanDisk 16 GB Pen drive

(USB) 1 No 260/-

Server and Web Application 7

https://www.shareus.com/computer/how-to-build-a-pc-from-scratch-pc-build-guide.html#:%7E:text=3.-,How%20to%20assemble%20the%20components,-Once%20you%27ve%20got

Cabinet Motherboard Processor Power Supply Unit Mouse

!‘& L

Monitor RAM Hard Disk Pen Drive Keyboard

Server and Web Application 8

Assembling the PC

STEP 1: ePEN CASE

(D Remove back screws

@ Take side cover off

STEP 2: MOUNT MOTHERBOARD

(@ Screw motherboard standoffs into the case

Motherl
The motherboard sits on
top of the motherboard
standoffs which screw
into the computer case
mounting points.

W s

The top of the standoff
Motherboard has a thread for the
Standoff motherboard mounting
screws to screw into.

-

@ Punch out rear I/O plate from the
case (if existing) and replace it
with the motherboard I/O plate

() Fasten the motherboard in place on top
of the mounting standoffs

o Install the mounting standoffs in the case positions that match the screw
'Q' TiP: mounting holes on your motherboard.
—

Server and Web Application

| tm ™
rese% racrflw(K\‘N(‘éﬁiﬁ‘y

“THE

BUI/LD
CtUB

STEP 3: MOUNT PROCESSOR (CPU)

(@ Locate the CPU socket holder on the motherboard

(@ Lift up the latch lever to release and hinge open the
CPU socket cover

@ Holding the CPU by its sides, line up any alignment
notches or the triangle on the corner of the CPU to
the triangle marked on the motherboard to ensure
the correct orientation

Gently place it straight down into the
motherboard socket to seat the CPU

Triangle -
alignment 't's_/l

marking

@ Lower the CPU socket cover over the CPU and lower
the latch lever closed again to secure the CPU socket
holder closed

STEP 4: INSTALL CPU COOLER

Fan power
connector on
the motherboard

@ Ifrequired”, apply thermal paste to
the back of CPU

@ Seat CPU heatsink/cooler and fix
in position

@ Plugthe power cable attached to
the cooler fan into the
motherboard connector

* Some CPU coolers do come with a thermal pad already applied, in which case you can
;léif%step @. If yours doesn't, you will need to apply thermal paste to the CPU surface

re seating the CPU cooler in position.
I —

Server and Web Application 10

CLUB researdl\(@

par
STEP 5. INSTALL POWER SUPPLY (PSU)

@ Mount the power supply and fasten with screws to the case mounting points

@ Plug the largest cabling connector from the power supply cabling into the motherboard
power connector

@ Plug the 8-pin cabling connector from the power supply cabling into the CPU power
connector

from poswer
supply cabling

Psu =
mounting
arEws

-

Largest connector
from power rpply
cabling

Server and Web Application

11

THE
BU/LD
CLUB

STEP 6: MOUNT MEMORY RAM)

(D Press to open the clips at both ends of the RAM mounting slots

@ Line up the notch on the RAM stick with the mounting slot

RAM Stick 5
W Alignment
.’4-/ notches

RAM Mounting Slots an Mothenboard

(@ Seatthe RAM and press
it firmly down into the
slot. The tabs should
automatically latch
closed as you press the
RAM down, securing the
RAM in place

@ Install any other RAM sticks
using the same process

Thes elip i% open
in preparation for
a second RAM
K

Mastnmherbo?f"ﬂs will hmmllmmn;fmm
mounting slots. If you are installing pairs
Mmtﬂnmmhmmoﬁwa‘onmﬂz

STEP §: MOUNT STORAGE DRIVES

Storage drives come in two main sizes: a 3.5" form factor or 2.5" form factor.

Due to their smaller size, 2.5" drives may need an adapter plate to mount them within your PC case.
The exact mounting strategy for storage drives will vary from computer case to computer case.

— —
\HUO‘ -
o
Case
mounting..5 | =
A ([
holes \(\ RS sATA
connection
Case ports
SATA mounting
[z_connection holes:

=" ports

(@ Mount storage drives in the case drive bays. Fix the drive in place with screws through
the case frame into the case mounting holes located on the storage drive

@ Connect the drive to the motherboard using a SATA cable

Server and Web Application

L
=
-
e

1IT™
h | INCUBATION
\ (ZELL/

12

shog aaug

SATA Cable

SATA Connector
from Power Supply
Cobling

@ Plugin power cabling to
the storage drive

@ Mount any other storage
drives in the same way

= CONNECT CASE FANS &
STEP 10 FRONT PANEL CONNECTORS
Some computer cases come with case fans already installed/mounted within the case.

In other cases you might need to mount your own case fans, or you may even choose to run your
computer without any case fans at all.

Computer case fan

[\/ﬁ—\\ Fan

— mounting
holes

@ Mount any case fans within your case as required
using the supplied screws or clips

Fan power
@ Connect any case fan power connectors to connector
the multiple fan headers located at various

places on the motherboard

Server and Web Application

13

“THE

BUI/LD
CLUB resé’énc]h @

@ ldentify the cabling from the front panel ports of your PC*

These front panel connectors will need to be plugged into the
motherboard so that buttons and inputs/outputs (1/0) on your
case front panel will work

Tt fremt prarsel pots vl e covnected o
ot cabing invsich: Dhat e

Micraghoneoudio
connector from case

% Fii pivied -1_‘1]
! I”
UASH connectoy @]‘-“'
J Fresth cote froet | b
@} Connect any front panel audio i Corie: fim poswes AR
connectors to the motherboard i i i g

front audio header

(& Connect any front panel USB connectors to the motherboard USE headers
({ Connect the front panel case connectors to the motherboard front panel /0 headers

* Different computer cases have slightly different /0 connections, but generally

both the connectors and mot| headers are labelled, souse these to your
advantage when warking out where to plug each cabling connector!
I —

+ CLOSE CASE &
STEP 1¥ CONNECT PERIPHERALS

(@ Place the side cover back on

@ Secure the side panel with case
SCrews

(@ Connect peripheral devices
including mouse, monitor,
keyboard, speakers etc.

Server and Web Application 14

‘rE

BU/LD

research \IN(UBAUON
park . ° /

D Connecting Peripherals

Creating a Bootable USB drive for CentOS Installation

® Note: Require 16GB Pen drive (USB).

Step 1

e Note: Download CentOS installer file in a windows PC or laptop and follow the
process.

Download CentOS 7 10S file from here.

Step 2

e Note: Download and Install PowerISO in a windows PC or laptop and follow the
process.

Download PowerlSO v8.1(64- bit) from here.

Server and Web Application 15

BUI/LD
CLUB researeh ‘/(”:D
park « "/
Step 3

Flash CentOS ISO file to the USB Stick

1) Start PowerlSO.
2) Insert the USB drive you intend to make bootable.
3) Choose the menu "Tools > Create Bootable USB Drive...".

4) In "Create bootable USB Drive" dialog, click "Browse" button to open the iso file for
CentOS.

5) Select the USB drive from the "Destination USB drive" list.
6) Choose the proper writing method. "Raw-write" is recommended.

7) Click "Start" button to start creating bootable USB drive for Linux.

Installing CentOS

Step 1

Boot the USB, Select Install CentOS 7 from the boot menu.

CentD3 7

Install CentDS ¢
Test this media & install CentD3S 7

Troubleshoot ing

fAutomatic boot in 47 seconds. ..

16

‘ 1IT™
h | INCUBATION
\ CELL

Step 2

Select the language and continue.

CENTOS 7 INSTALLATION
BB ue

WELCOME TO CENTOS 7.

What language would you like to use during the installation process?

English English [Entisn Wnted stazes) |

ited Kingdom)

Afrikaans

Step 3

Set the Date and Time/ Time zone.

DATE & TIME CENTOS 7 INSTALLATION

Region: | Americas ~ | ity New York - Network Time | |OFF | ¥

@ 24-hour
AM{PM

£i. You need to set up networking first if you want to use NTP

Server and Web Application 17

CLUB rescla’ér?h @

K "/

Step 4

Select the Installation source.
- you can specify locally available installation media.

INSTALLATION DESTINATION CENTOS 7 INSTALLATION

ke Bl

Device Selection ‘
Select the device(s) you'd Like to install to. They will be Left untouched until you click on the main menu's "Begin Installation” button ‘

Local Standard Disks

29.87GB

_6

ATA VBOX HARDDISK
sda / 29.87 GB free

Specialized & Network Diske

Add a disk...

Other Storage Options

Partitioning

@ Automatically conf gure pantitianng | wall canfigure partitonng

| would [&e to make additional space available.

Encryption

Encrypt my dats

fnll dlifk gurnmary .and boatloader 1 disk selected: 29,87 GB capacity: 29.87 GB free |

Step 5

Choose Installation Destination
- Select the | will configure partitioning checkbox and choose Done.
- If you do not have enough free space, you can reclaim disk space and instruct the
system to delete files.
- Total space — 250 GiB

Server and Web Application 18

- /Boot part - 2048 MiB size

- Swap - 16384 MiB

-/ -remaining available space

Cent0S 7 [Running] - Oracle VM VirtualBox

MANUAL PARTITIONING

* New Cent0S 7 Installation centos-root
Name: root
Pooot S00MB pount Point:
sl
Desired Capacity: 27 GB
swap 204 GB
Sl Device TTFH LM
File System! xfs
Volume Grmp cenios
- ¢ B

Avapie seace [l 0L space
32331 MB § 29.87 GB

1 storant deice gelected

Step 6

Software packages selection.

Enerypt

Madfy

Nore: The settings you make on this screen will not be applied

until you click on the man menu's Begi Installation’ hitton

Reset All

- Select the server with GUI option.

Server and Web Application

19

SOFTWARE SELECTION CENTOS LINUX 7 INSTALLATIO

Help!

Base Environment Add-Ons for Selected Environment

Minimal Install Backup Server

Basic functionality Software to centralize your infrastructure's backups.

Compute Node DNS Name Server

Installation for performing computation and processing This package group allows you to run a DMS name

Infrastructure Server server (BIND) on the system

Server for operating network infrastructure services. E-mail Server

File and Print Server Allows the system to act as a SMTP and/or IMAP e-

File, print, and storage server for enterprises mail server

Basic Web Server FTP Server

Server for serving static and dynamic internet content. Allows the system to act as an FTP server.

Virtualization Host File and Storage Server

Minimal virtualization host CIF5, SMB, NFS, iSCSI, iSER, and iSNS network
rver with GUI storage server.

Server for operating network infrastructure services, | Hardware Monitoring Utilitie s

with a GUI. A set of tools to monitor server hardware

GMOME Desktop High Availability

GNOME is a highly intuitive and user friendly desktop Infrastructure for highly available services and/or

environment. shared storage.

KDE Plasma Workspaces Identity Manage ment Server

The KDE Plasma Workspaces, a highly-configurable Centralized management of users, servers and

O T S-S S S S DU TR | authentication nolicies

Step 7

Configure Network IP & Host Name.
1) Set the Hostname

- In our example, we will set
the Hostname as webapp.localhost.com, where webapp is the hostname
while localhost.com is the domain.

2) To add a static IPv4 address:

- Turn ON Ethernet.
- Select configure.
- Click the Add button to add a static IP address.
- Enter the information of your network domain. For example
- IP Address (192.168.0.10)
- Netmask Address (255.255.255.0)
- Gateway Address (192.168.0.254)
- DNS Servers Address (192.168.0.12)
- Click Save to confirm your changes.

Server and Web Application

BUILD VN

ctuB research | ‘N(émﬁy

park

NETWORK & HOST NAME CENTOS 7 INSTALLATION
m
P Ethernet {enp0s3) ' =

L= Corporation B2540EM Gigabit Ethernet Controller \ Py o
/\ Disconnected

Hardware Address
Speed 1000 Mb/s

+ Configure...

Host name: | server.phoenixnap.com Apply Current host name: localhost

Step 8

Define Root Password & User Creation

ROOT PASSWORD

The root account i used for admenistering the system. Enter a password for the root user
Root Password: | #9esssss

Weak

Confirm; LERITTNT)

L4 The password you have provided is weak. You will have to press Done twice to confirm &,

Server and Web Application

21

-
I
e

o~
r
O
-

BU
(3

0O
Cc
(VY]
®
&
Q
a3
7

CREATE USER W CENTOS 7 INSTALLATION

foend’ S

Full name LinxTechi

Username L

Tip: Keep your username shorter than 32 characters and do not use spaces
Make this user administrator

¥ Require a password to use this account

Password TRRRRERRRR RN

Strang

Confirm password | Sssssssssssnsn

Advanced

Step 9

Once done, remove any installation media and reboot your computer.

CONFIGURATION CENTOS 7 INSTALLATION

% B

Cent0S

Complete!
CentO5 is now successfully installed on your system and ready for you to use! Go ahead and reboot to
start using it!

Reboot

it Use of this product is subject to the license agreement found at /usr/share/centos-release/ELLA

Server and Web Application

™

| INCUBATION
\ CELL

22

BUI/LD
CLUB resé’gpc]h ’@
park \ "/

Installing Oracle Java JDK 17

Step 1

To give sudo access to a user
1. Open Terminal

- Using Shortcut (CTRL+ALT+T).
2. First, Switch to the root user.

3. Use the visudo command to edit the configuration file:

[root@localhost ~]$ visudo

4. This will open /etc/sudoers for editing. To add a user and grant full sudo privileges,
add the following line:

[webapp] ALL=(ALL:ALL) ALL

5. Save and exit the file.
Step 2

1. First, switch to the root user.

[webapp@localhost ~]$ sudo su

2. Enter your root password.

3. Then, download Oracle Java JDK 17 using the wget command in the terminal.

[root@webapp ~]$% wget https://download.oracle.com/java/17/latest/jdk-17_lin

ux-x64_bin.rpm

4. And then, install Oracle Java JDK 17 using the rpm command.

[root@webapp ~]$ rpm -ivh jdk-17 linux-x64 bin.rpm

5. After the installation of Java, use the below command to verify the version.

Server and Web Application 23

BUILD
CLUB resﬁéggr,&)

[root@webapp ~]$ java -version

Output:

java version "17.0.1" 2021-10-19 LTS
Java(TM) SE Runtime Environment (build 17.0.1+12-LTS-39)

Java HotSpot(TM) 64-Bit Server VM (build 17.0.1+12-LTS-39, mixed mode, shar
ing)

Starting Resin for development

Step 1

1. Link /usr/java to the Java home or set environment variable JAVA_HOME.

[root@webapp ~]$ vi /etc/bashrc

or

[root@webapp ~]$ vim ~/.bashrc
2. Add the following line at the end:

export JAVA HOME=/usr/java/jdk-17.0.2

3. Save and exit the file.

or

Step 2

1. Download the resin package and unzip it.

[webapp@localhost ~]$ wget -c http://caucho.com/download/resin-4.0.63.tar.g

z

[webapp@localhost ~]$ tar zxf resin-4.0.63.tar.gz

Server and Web Application 24

http://caucho.com/download/resin-4.0.63.tar.gz
http://caucho.com/download/resin-4.0.63.tar.gz

2. Navigate to resin directory.

[webapp@localhost ~]$ cd resin-4.0.63

3. Install openssl-devel package.

[webapp@localhost resin-4.0.63]% yum install -y openssl-devel

4. Compile and install.

- Define the location of Resin and Set JAVA_HOME using the syntax
JAVA_HOME=path to JDK. For example, JAVA_HOME-= /usr/java/jdk17.0.2/.

[webapp@localhost resin-4.0.63]$% ./configure --prefix=/home/webapp/resin-4.

0.63 --with-java-home=/usr/java/jdk-17.0.2 --enable-64bit --enable-64bit-jn
i --enable-64bit-plugin --enable-debug

[webapp@localhost resin-4.0.63]% make
[webapp@localhost resin-4.0.63]% make install

5. Use the following method to start the resin installed by compiling.

[webapp@localhost ~]$ /home/webapp/resin/bin/./resin.sh start

6. Finally, to verify that resin is working as expected, open http://localhost:8080 in
your browser, and you will see the default resin page.

Configuring firewall

Allow traffic on port 8080.

[root@webapp ~]$ firewall-cmd --zone=public --add-port=8080/tcp --permanent

Installing Node.js and npm from Node Source repository

1. Next, add the NodeSource repository to the system with:

[root@webapp ~]$ curl -sL https://rpm.nodesource.com/setup 14.x | bash -

Server and Web Application 25

http://localhost:8080/

BU/LD
CLUB reséafch @
park

2. The output will indicate you to use the following command if you want to install
Node.js and npm:

[root@webapp ~]$ yum install -y nodejs

3. Finally, verify the installed software with the commands:

[root@webapp ~]$ node -v

Your result should be similar to this:

v14.9.2
[root@webapp ~]$ npm -version

Your result should be similar to this:

6.13.6

Enabling MariaDB

1. We'll start the daemon with the following command:

[webapp@localhost ~]$ sudo systemctl start mariadb
2. systemctl doesn’t display the outcome of all service management commands,
we’ll use the following command:
[webapp@localhost ~]$ sudo systemctl status mariadb

3. If MariaDB has successfully started, the output should contain "Active: active
(running)” and the final line should look something like:

Dec 01 19:06:20 centos-512mb-sfo2-01 systemd[1]: Started MariaDB database s

erver.

4. Next, let’s take a moment to ensure that MariaDB starts at boot, using
the systemctl enable command, which will create the necessary symlinks.

[webapp@localhost ~]$ sudo systemctl enable mariadb

Server and Web Application 26

BUILD
CLUB resﬁéggr,&)

Securing the MariaDB Server

1. MariaDB includes a security script to change some of the less secure default
options for things like remote root logins and sample users. Use this command to
run the security script:

[webapp@localhost ~]$ sudo mysql secure installation

2. The script will prompt you to set up the root user password.

Testing the Installation

We can verify our installation and get information about it by connecting with

the tool, a client that lets you run administrative commands. Use the
following command to connect to MariaDB as root (-u root), prompt for a password (-
p), and return the version.

[webapp@localhost ~]$ mysgladmin -u root -p version

You should see output similar to this:

Output
mysqladmin Ver 9.0 Distrib 5.5.50-MariaDB, for Linux on x86 64
Copyright (c) 2000, 2016, Oracle, MariaDB Corporation Ab, and others.

Server version 5.5.50-MariaDB
Protocol version 10
Connection Localhost via UNIX socket

UNIX socket /var/lib/mysql/mysqgl.sock

Uptime: 4 min 4 sec

Threads: 1 Questions: 42 Slow queries: © Opens: 1 Flush tables: 2 Open tables:
7 Queries per second avg: 0.172

This indicates the installation has been successful.

Server and Web Application 27

Login to MySQL

First, we’ll login to the MySQL server from the command line with the following
command:

[webapp@localhost ~]$ mysgql -u root -p

Enter password:

Show (View) All MySQL Databases

1. Toview the database, you’ve created simply issue the following command:

MariaDB [(none)]> SHOW DATABASES;

Your result should be similar to this:

mysql> SHOW DATABASES;

information_schema |
mysql

rows in set (0.00 sec)

2. To exit, type quit or exit and press [Enter].

Automate services start on reboot.

Enable MariaDB Service on Boot

[webapp@localhost ~]$ systemctl enable mariadb.service

Server and Web Application 28

BUI/LD
CLUB reséafch ’@
park \ "/

Start resin on Boot.

Make an entry in with the start command.

“su -webapp -c¢ ‘/home/webapp/resin/bin/./resin.sh start’”

Install Google Chrome

1. First, download Google Chrome using the following command in the terminal:

[webapp@localhost ~]$ wget https://dl.google.com/linux/direct/google-chrome

-stable current x86 64.rpm

2. Then, use the yum command to install Chrome web browser:

[webapp@localhost ~]$ sudo yum localinstall google-chrome-stable current_x8

6_64.rpm

3. You can start Google Chrome from GUI itself:

- Applications > Internet > Google Chrome

® NOTE: Make Google Chrome as your default browser

Server and Web Application 29

Build an interactive web application.

ﬁBorcelle Restaurant

HEALTHY
FOOD MENU

Enjoy our healthy menu, Made
with the best ingredients for you

Server and Web Application 30

BUI/LD
jeiis reseanch (\
park /

Contents

Prerequisites
Aim
Software

Building the frontend of Restaurant table reservation web

application using React JS

Building the backend of Restaurant table reservation web

application using Spring Boot framework.
Deploying war file in the resin.

Creating a database for Restaurant table reservation web

application in PostgreSQL.
Testing the web application.

Additional Tasks

Server and Web Application 31

BUILD .
CLU B resea rch lN(UBﬁ\ON
park \
Prerequisites
Topic Resources

React)S Axios GET, POST, PUT and Link

DELETE Tutorial

Spring Boot Tutorial Link

MariaDB Basic Tutorial Lin

Aim

To learn the major components of web application architectures, build a fully functional

full-stack web application.

Software

1. Visual Studio Code
2. Apache NetBeans

Visual Studio Code

Server and Web Application

Apache
NetBeans |DE

32

https://www.javaguides.net/2020/08/reactjs-axios-get-post-put-and-delete-example-tutorial.html
https://www.tutorialspoint.com/spring_boot/spring_boot_tutorial.pdf
https://linuxhint.com/mariadb-tutorial/

Building the frontend of Restaurant table reservation web application
using React JS

Step 1

Install Visual Studio Code IDE

1) Import the Microsoft GPG key with this command.

sudo rpm -import https://packages.microsoft.com/keys/microsoft.asc

2) Create the repo file as below to enable the Visual Studio Code repository.

sudo nano /etc/yum.repos.d/vscode.repo

3) Add the below-given content in vscode.repo

[code]

name=Visual Studio Code
baseurl=https://packages.microsoft.com/yumrepos/vscode
enabled=1

gpgcheck=1

gpgkey=https://packages.microsoft.com/keys/microsoft.asc

4) Save and exit the vscode.repo

5) Install the latest version of Visual Studio Code with this command.

sudo yum install code

6) Now that VS Code is installed on your CentOS system now you can open it from
Applications -> Programming -> Visual Studio Code.

Step 2

Create a responsive Restaurant table reservation web application there will be an admin
interface and a customer interface. The customer interface is to register, sign in and

Server and Web Application 33

BUI/LD
CLUB reSé’gmh \lr\f(ué}‘[\ON
park

reserve a table as per the availability of the seats and the admin interface is to sign in and

manage table booking.

App Flow

Customers create an account - login - books a slot.

Admin login = view bookings = clear bookings

Step 3

Import the Project

1) Open Visual Studio. (Choose File > Open Folder)

Visual Studio Code

Editing evolved

Start Walkthroughs

*" Get started wi

- 0333PM
D BT e

2) Unzip the react.zip folder and select the unzip folder that contains the React
application.

3) The directory structure of the react project will look like this.

Server and Web Application 34

BUI/LD
CLUB reselr’zgmh @
park . "/

~ REACTAPP - COPY
» node_modules
~ public
index.html

~ 5IC
» Customerlogin
» Customerregister
» Form
» Home
» Login
» Table

App.css

logo-lg.png
logo.png
J5 Routes.js

gitignore

{} package-lockjson

{} packagejson

Getting Started

Inside public folder, index.html file that will serve as our app's starting point.

- The index.html file is the root of your application. This is the file the server reads,
and it is the file that your browser will display.

Next, inside src folder, index. js file is your JavaScript entry point to import dependencies,
and it will be run as soon as your app has loaded.

Building our App

There will be a main parent component. Each of the individual "pages" of app will be
separate components that feed into the main component.

Server and Web Application 35

Displaying the Initial Frame

Inside src folder, App.js will just be a component that contains Ul elements for our
navigation header and an empty area for content to load in.

Adding CSS

Inside src folder, App.css is to style the app.

Creating our Content Pages

Our app will have six pages of content.

Home Page
Admin
- Admin Login Form

- Booking Page to list bookings and clear bookings.

Customer
- Customer Register Form

- Customer Login Form
- Booking Page to book a slot.

Step 4

Create Customerregister Component

Customer Register
Name

Customerregister component is for customer register.

Server and Web Application 36

THE

U
CLU rescla’é rch ‘/(;@

Inside src/Customerregister folder, open Customerregister. js file and write the
following code to create a simple sign-up form with name, phone, email, and password
input fields and a submit button that allows for user input and subsequently POSTs the
content to an API:

Inside the handlecustomerRegister function, you prevent the default action of the
form. Then update the state to the data input.

We have defined states for email, name, phone, and password for holding form data.
Note: The states can only be updated using set methods as shown in the methods.

We’'re setting email, name, phone, and password to empty strings.

// Handling the customer registration form submission
handleCustomerRegister = e => {

e.preventDefault();

const data = {
email: this.state.email,
name: this.state.name,
phone: this.state.phone,
password: this.state.password,

¥

this.setState({

email: "',

name: '',

phone: '',

password: '',
}s

Using posT gives you the same response object with information that you can use inside
of a then call.

Server and Web Application 37

THE
U

IItm
_LU rese%rch \IMULY‘UON

(ELL/

To complete the pPosT request, you first capture the data input. Then you add the input

oﬂ

along with the posT request, which will give you a response. You can then console.log
the response, which should show the data inputin the form.

HTTP POST request to the server and add the data to the database.
axios
.post("http://localhost:8080/app/customerregister"”, data)
.then(res => {
if (res.data === 1) {

alert("Registered Successfully");

.catch(err => console.log(err));

};

Inside the checkuser function, you prevent the default action of the form.

The user enters their email. If a user with the provided email already exists in the
database, an alert message is displayed right away.

// Handling the user already exists

checkUser = e => {
e.preventDefault();

const value = e.target.value;

console.log(value)

var data = '{"email":"'+value+'"}";

console.log(data);

Server and Web Application 38

BU/LD
ctuB rescla’zgmh @
park \ "/

Using posT gives you the same response object with information that you can use inside
of a then call.

To complete the posT request, you first capture the data input. Then you add the input
along with the posT request, which will give you a response. You can then console.log
the response, which should show the data input in the form.

HTTP POST request to the server.

axios
.post("http://localhost:8080/app/checkuser",]JSON.parse(data))
.then(res => {
if (res.data === 1) {
alert("User Already Exists");
}
else{
this.setState({email: value});
this.validateField("email",value);
}
})

.catch(err => console.log(err));

}s

Now, we’ll call a validation after the user types in the field.

The setstate method takes a callback function as a second argument, so let’s pass a
validation function to it.

// Handling the name change
handleUserInput = (e) => {
const name = e.target.name;

const value = e.target.value;

Server and Web Application 39

e R ()
C-LUB research t\]h(i&é%i.[\(?N
park . "/

this.setState({ [name]: value },

() => { this.validateField(name, value) });

We do two different checks for the input fields. For the email field, we check it against a
regular expression to see if it’s an email.

For the phone field, we check if the length is exactly of 10 characters or not.

For the password field, we check if the length is a minimum of 8 characters or not.

When the field doesn’t pass the check, we set an error message for it and set its validity
to false.

Then we call setstate to update the formeErrors and the field validity.

// Validating the field
validateField(fieldName, value) {
let fieldvalidationErrors = this.state.formErrors;
let emailValid = this.state.emailVvalid;
let phoneValid = this.state.phoneValid;
let passwordValid = this.state.passwordValid;

switch (fieldName) {

case 'email':
emailvValid = value.match(/~[A-Z0-9. %+-]+@[A-Z20-9.-]+\.[A-Z]{2,4}%$/1);
fieldValidationErrors.email = emailvalid ? "' ' is invalid';
break;
case 'phone':

phoneValid = value.length ==

10;

fieldvalidationErrors.phone = phonevalid ? "' ' is invalid';

break;

Server and Web Application 40

CLUB reséé reh | vcgihon

rark /

case 'password’:
passwordValid = value.length >= 8;
fieldValidationErrors.password = passwordValid ? '' : ' must be atleast 8
characters';
break;
default:
break;
}
this.setState({
formErrors: fieldValidationErrors,
emailValid: emailvalid,
phoneValid: phoneValid,
passwordValid: passwordValid,

}, this.validateForm);

we pass the validateForm callback to set the value of formvalid.

// Validating the form
validateForm() {
this.setState({ formvalid: this.state.emailValid && this.state.phoneValid &&

this.state.passwordvalid });

}

errorClass is a method we can define as:

errorClass(error) {

return (error.length === 0 ? 'has-error');

Now when a field has an error, it has a red border around it.

Server and Web Application 41

Inside src/Customerregister folder, Customerregistererrors.js file is a stateless
functional component (or presentational component) which simply iterates through all
the form validation errors and displays them.

Inside src/Customerregister folder, Customerregister.css file is to style the form.

Step 5

Create Customerlogin Component

Customer Login

EmaillD

admin@gmail.com

Password

Customerlogin component is for customer login.
Inside src/Customerlogin folder, open Customerlogin.js file and write the following

code to create a simple sign-in form with email and password input fields and a submit
button that allows for user input and subsequently POSTs the content to an API:

Inside the handlecustomerLogin function, you prevent the default action of the form.
Then update the state to the data input.

We have defined states for email, and password for holding form data.

Note: The states can only be updated using set methods as shown in the methods.

We’'re setting email and password to empty strings.

// Handling the customer login form submission

handleCustomerLogin = e => {

Server and Web Application 42

e.preventDefault();
const data = {
email: this.state.email,

password: this.state.password,

};
this.setState({
email: "',
password: '',

})s

Using posT gives you the same response object with information that you can use inside

of a then call.

To complete the posT request, you first capture the data input. Then you add the input
along with the posT request, which will give you a response. You can then console.log
the response, which should show the data input in the form.

HTTP POST request to the server.

axios
.post("http://localhost:8080/app/customerlogin”, data)
.then(res => {
if (res.data !== null)
{
console.log(res)
this.props.history.push({pathname:'/Form',state :{

customerid:res.data.CustomerID[Q].id

s
}

else

alert("EmailID or Password Incorrect")

Server and Web Application 43

BUI/LD
C-LU B resé’gmh \ IM\ILEETLON
park \ "/
}
)

.catch(err => console.log(err));
¥

Now, we’ll call a validation after the user types in the field.

The setstate method takes a callback function as a second argument, so let’s pass a

validation function to it.

// Handling the name change
handleUserInput = (e) => {
const name = e.target.name;
const value = e.target.value;
this.setState({ [name]: value },

() => { this.validateField(name, value) });

We do two different checks for the input fields. For the email field, we check it against a
regular expression to see if it's an email.

For the password field, we check if the length is a minimum of 8 characters or not.

When the field doesn’t pass the check, we set an error message for it and set its validity

to false.

Then we call setstate to update the formErrors and the field validity.

// Validating the field
validateField(fieldName, value) {
let fieldValidationErrors = this.state.formErrors;
let emailvalid = this.state.emailValid;

let passwordValid = this.state.passwordValid;

Server and Web Application 44

BU/LD T
rese% Ch \\INU“L{.TL\ON

ark

switch (fieldName) {

case 'email':
emailValid = value.match(/A([\w.%+-]+)@([\w-]+\.)+([\w]{2,})$/1);

fieldValidationErrors.email = emailvalid ? "' ' is invalid';

break;
case 'password’:

passwordValid = value.length >= 8;

fieldvalidationErrors.password = passwordValid ? "' 'must be alteast 8

characters’;
break;
default:
break;
}

this.setState({

formErrors: fieldValidationErrors,
emailValid: emailvalid,
passwordValid: passwordValid,

}, this.validateForm);

we pass the validateForm callback to set the value of formvalid.

// Validating the form

validateForm() {
this.setState({ formvalid: this.state.emailvValid && this.state.passwordValid });

errorClass is a method we can define as:

errorClass(error) {

return (error.length === 0 ? '' : "has-error');

45

Server and Web Application

Now when a field has an error, it has a red border around it.

Inside src/customerlogin folder, Customerloginerrors.js file is a stateless functional
component (or presentational component) which simply iterates through all the form
validation errors and displays them.

Inside src/customerlogin folder, customerlogin.css file is to style the form.
Step 6

Create Form Component

Logout

Book a Slot

Name

Form component is for booking a slot.

Inside src/Form folder, open Form. js file and write the following code to create a form
with name, phone, number of person and date & time input fields and a submit button
that allows for user input and subsequently POSTs the content to an API:

Inside the checkavailability function, you prevent the default action of the form.

The user enters the number of persons. an event checks if booking slot is available or
not in the database, an alert message is displayed right away.

// Handling the booking slot availability
checkAvailability = e => {
e.preventDefault();

const value = e.target.value;

Server and Web Application 46

THE

U
CLU rescla’é rch @

console.log(value)
var data = '{"threshold":"'+value+'"}"';

console.log(data);

Using posT gives you the same response object with information that you can use inside
of a then call.

To complete the posT request, you first capture the data input. Then you add the input
along with the rosT request, which will give you a response. You can then console.log
the response, which should show the data input in the form.

HTTP POST request to the server.

axios
.post("http://localhost:8080/app/checkavailability",JSON.parse(data))
.then(res => {
if (res.data === 1) {
alert("Slot not available");
}
else{
this.setState({person: value});

this.validateField("person",value);

}
1)

.catch(err => console.log(err));
}s5

Inside the handleBookings function, you prevent the default action of the form. Then
update the state to the data input.

We have defined states for email, name, phone, customerid, person, and date & time
for holding form data.

Server and Web Application 47

e)

0
=
C
W
'CjQJr-r

Note: The states can only be updated using set methods as shown in the methods.

We're setting email, name, person, date & time, and phone to empty strings.

// Handling the booking form submission
handleBookings = e => {
e.preventDefault();
const data = {
email: this.state.email,
name: this.state.name,
person: this.state.person,
datetime: this.state.datetime,
phone: this.state.phone,

customerid:this.props.location.state.customerid

};

console.log(data);

this.setState({

email: ,

name: ,

person: >

datetime: ,

phone: ,

})s;

Using posT gives you the same response object with information that you can use inside
of a then call.

To complete the pPosT request, you first capture the data input. Then you add the input
along with the posT request, which will give you a response. You can then console.log
the response, which should show the data input in the form.

Server and Web Application 48

BU/LD
ctuB rescla’zgmh @
park \ "/

HTTP POST request to the server and add the data to the database.

axios
.post("http://localhost:8080/app/createbooking”, data)
.then(res => {
if (res.data === 1) {

alert("Booked Successfully");

.catch(err => console.log(err));

};

Now, we’ll call a validation after the user types in the field.

The setstate method takes a callback function as a second argument, so let’s pass a
validation function to it.
// Handling the name change
handleUserInput = (e) => {
const name = e.target.name;
const value = e.target.value;
this.setState({ [name]: value },

() => { this.validateField(name, value) });

We do two different checks for the input fields. For the email field, we check it against a

regular expression to see if it’s an email.

For the phone field, we check if the length is an exactly of 10 characters or not.

Server and Web Application 49

I
h \ IMULAUON

rk

0
=
C
W
'CjQJr-r

When the field doesn’t pass the check, we set an error message for it and set its validity
to false.
// Validating the field

validateField(fieldName, value) {

let fieldvalidationErrors = this.state.formErrors;

let emailVvalid this.state.emailVvalid;

let phoneValid = this.state.phoneValid;

switch (fieldName) {
case 'email':
emailValid = value.match(/~([\w.%+-]+)@([\w-J+\.)+([\w]{2,})$/1);

fieldValidationErrors.email = emailvalid ? "' is invalid';
break;
case 'phone':

phoneValid = value.length === 10;

fieldvalidationErrors.phone = phonevalid ? "' is invalid';
break;
default:
break;
}
this.setState({
formErrors: fieldValidationErrors,
emailValid: emailvalid,

phoneValid: phoneValid,

}, this.validateForm);

Then we call setstate to update the formErrors and the field validity.

we pass the validateForm callback to set the value of formvalid.

Server and Web Application 50

// Validating the form
validateForm() {

this.setState({ formvalid: this.state.emailValid && this.state.phoneVvalid });

errorClass is a method we can define as:

errorClass(error) {

return (error.length === 0 ? '' : "has-error');

Now when a field has an error, it has a red border around it.
Inside src/Form folder, FormErrors.js file is a stateless functional component (or

presentational component) which simply iterates through all the form validation errors
and displays them.

Inside src/Form folder, Form.css file is to style the form.

Step 7

Create Login Component

Admin Login

Username

admin@gmailcom

Password

Login component is for admin login.

Server and Web Application 51

BU/LD
ctuB rescla’zgmh @
park \ "/

Inside src/Login folder, open Login.js file and write the following code to create a
simple sign-in form with email and password input fields and a submit button that
allows for user input and subsequently POSTs the content to an API:

Inside the handleLogin function, you prevent the default action of the form. Then
update the state to the data input.

We have defined states for username, and password for holding form data.

Note: The states can only be updated using set methods as shown in the methods.

We’'re setting username and password to empty strings.

// Handling the admin login form submission
handlelLogin = e => {
e.preventDefault();
const data = {
username: this.state.username,

password: this.state.password,

¥
this.setState({
username: '',
password: '',
})s

Using pPOsT gives you the same response object with information that you can use inside
of a then call.

To complete the posT request, you first capture the data input. Then you add the input
along with the posT request, which will give you a response. You can then console.log
the response, which should show the data input in the form.

HTTP POST request to the server.

Server and Web Application 52

BUI/LD -
CLUB research
park

.post("http://localhost:8080/app/login", data)
.then(res => {
if (res.data === 1)
{
console.log(res)
this.props.history.push('/Table");
}
else

alert("Username or Password Incorrect")

}
)

.catch(err => console.log(err));
}s

Now, we’ll call a validation after the user types in the field.

The setstate method takes a callback function as a second argument, so let’s pass a

validation function to it.

// Handling the name change
handleUserInput = (e) => {
const name = e.target.name;
const value = e.target.value;
this.setState({ [name]: value },

() => { this.validateField(name, value) });

We do two different checks for the input fields. For the email field, we check it against a

regular expression to see if it’s an email.

Server and Web Application

53

h \m
S

0
=
C
W
'CjQJr-r

For the password field, we check if the length is a minimum of 8 characters or not.

When the field doesn’t pass the check, we set an error message for it and set its validity
to false.
// Validating the field

validateField(fieldName, value) {
let fieldvalidationErrors = this.state.formErrors;

let usernameValid = this.state.usernameValid;

let passwordValid = this.state.passwordValid;
switch (fieldName) {
case ‘'username’:
usernameValid = value.match(/~([\w.%+-]1+)@([\w-]+\.)+([\w]{2,})$/1);

fieldvalidationErrors.username = usernameValid ? '' is invalid';
break;
case 'password’:
passwordValid = value.length >= 8;
fieldvalidationErrors.password = passwordValid ? '' ' is invalid';
break;
default:
break;
}
this.setState({
formErrors: fieldValidationErrors,
usernameValid: usernameValid,

passwordValid: passwordValid,

}, this.validateForm);

Server and Web Application 54

IIT™
INCUBATION
CELL

CLUB reS(Ie,élcpc]h
park

Then we call setstate to update the formiErrors and the field validity.

we pass the validateForm callback to set the value of formvalid.
// Validating the form
validateForm() {
this.setState({ formvalid: this.state.usernameValid && this.state.passwordvalid
})s
}

errorClass is a method we can define as:

errorClass(error) {
return (error.length === 0 ? '' : 'has-error');

}

Now when a field has an error, it has a red border around it.

Inside src/Login folder, LoginErrors. s file is a stateless functional component (or
presentational component) which simply iterates through all the form validation errors
and displays them.

Inside src/Login folder, Login.css file is to style the form.

Step 8

Create Home Component

ﬁaorceile Restaurant

HEALTHY
FOOD MENU

Server and Web Application 55

Home component is for home page.

Inside src/Home folder, Home. js file

Inside src/Home folder, Home. css file is to style the form.
Step 9

Create Table Component

8056030355

8056030355

Table component is for listing bookings and clear bookings.

Inside src/Table folder, open Table.js file and add write the following code to list
bookings, subsequently GET the content from an APl and to clear bookings that allows
for user input, subsequently POSTs the content to an API:

You use axios.get (url) with a URL from an APl endpoint to get a promise which
returns a response object.

// Handling the booking list
async getUsersData(){
const res = await axios.get("http://localhost:8080/app/viewbooking")
console.log(res.data)

this.setState({loading:false, users: res.data})

Inside the clearBookings function, you prevent the default action of the form.

Server and Web Application 56

BU/LD
ctuB rescla’zgmh @
park \ "/

Using posT gives you the same response object with information that you can use inside
of a then call.

HTTP POST request to the server.

// Handling the clear booking
clearBookings = e => {

e.preventDefault();

axios
.post("http://localhost:8080/app/clearbookings")
.then(res => {
if (res.data === 1) {
alert("Cleared Bookings");
this.getUsersData()
}
}
)

.catch(err => console.log(err));

};

Configure React Router

Inside src folder, In Routes. js file React Router enables the navigation among views of
various components in a React Application.

Import the history package.

Inside src folder, History. s file.
The history library lets you easily manage session history anywhere JavaScript runs.

Step 9

Run the React App

Server and Web Application 57

BUI/LD
CLUB reselr’zgmh @
park \ "/

Open the command prompt, go to the directory of the React JS project folder, execute
the following command.

Using npm start
[webapp@localhost ~]$ /home/webapp/reactapp/npm start

This will run the application on the port, localhost:3000.

Building the backend of Restaurant table reservation web application

using Spring Boot framework.

Step 1

Install Apache NetBeans IDE

To install Apache NetBeans, simply use the following command:

[webapp@localhost ~]$ sudo yum install epel-release

[webapp@localhost ~]$ sudo yum install snapd

[webapp@localhost ~]$ sudo systemctl enable --now snapd.socket

[webapp@localhost ~]$ sudo 1n -s /var/lib/snapd/snap /snap

[webapp@localhost ~]$ sudo snap install netbeans --classic

Step 2

A Java Spring project requires a set of libraries and packages that enable the requested
features. For our project, we select Maven as the project management tool. Maven
helps to build and manage your Java project. It creates a so-called POM (Project-Object-
Model) with all the information and configuration details of the project, which is saved
in a pom.xml file.

Server and Web Application 58

H
BUILD
,CLUB

Step 3

Import the Project

1) Open Apache NetBeans, select File » Open Project

=]

T NewProject.. Ctrl«Shift+N
T New File.. Ctrl+N

— StatPage * [£] SimpleControllerjava X

Open Recent Project >

Close Project
Close Other Projects

‘ Apache
NetBeans IDE

Close All Projects

o

OpenfFile..

Open Recent File >

Project Groups..
Project Properties

Recent Projects

Import Praject >

Export Project >
port Froje mavenproject1

Save Ctrlss demo
Save As,

Save All Ctrl+Shift+§

Page Setup..
print, Ctrl+ Alt Shit+P /
Printto HTML..

Exit

Output %

(i) Notifications Inspector Q4 Search Results

2) Unzip the SpringApp.zip folder and select the unzip folder containing the

project you want to import.

O File Edt View Nevigate Sowce Refactor Run Debug Profile Team Tools Window Help

O THP B O

hEES DE

Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

O THI RO

Apache NetBeans IDE 13

g, G G

Qr search (Ctrls) = X

My NetBeans

Install Plugins

Add suppart for other languages and
technologies by installing plugins from the
NetBeans Update Center.

Apache NetBeans IDE 13

s G G

Project Name:

an E-Marketplace mobile application\ emarket

[| Trust Project Build Script

Open Required Projects:

Activate Features

NetBeans tumns on functionality as you use.
it. Start creating and opening projects and
the IDE will just activate the features you
need, making your experience quicker and
cleaner. Altematively, you can activate
features manually.

INS

Q- Search (Ctrl+) -

tivate Features

theans tums on functionality as you use:
tart creating and opening projects and
IDE wil just activate the features you
d, making your experience quicker and
aner, Altematively, you can activate
ures manually.

Open Project

Projects X | Senvices _ StatPage X [@] SimpleControllerjava X
25 © wp
o D emarket
& SourcePackages
g B TestPackages
g) Other Sources) Open Praject
= & Dependencies
& Runtime Dependencies Lookin: | | Build an E-Marketplace mobile application
& Java Dependencies
« Project Files Recent ftems
© tin emarketplace_indigrain_app
Deskiop
Documents
This PC
* File Name: C\U
Network Fies of Type: | project Folder

C{ Opensthe project located in the selected folder.

(i) Notifications Inspector Q, Search Results

3) Click Open Project to complete the process.

Server and Web Application

NS

™
INCUBATION
CELL

Maven

59

“THE

BUI/LD
CtUB

4) The directory structure of the spring boot project will look like this.

© app
@ Source Packages

[com.spring.app

|&f: Samplefpplication.java
plespp J

|&] SampleBEjava
|&] SimpleControllerjava
& UserMgtController java
|&] customer.java
H com.spring.app.model
[&] Admin.java
|&] Booking.java
[&] Custornerjava
[&] Hoteljava
5| COMLSPring.app.service
@ Test Packages
0 Other Sources
a0 sro/main/resources
5| <default package=

EI applicaticn.properties

g Dependencies
& Runtime Dependencies
g Java Dependencies
& Project Files
e pomxml
nk-configuration.xml

Step 4

Create POJOs (plain old Java object) for Admin, Customer, Booking and Hotel

Customer.java

In the Projects window, Inside project file > source packages > com.spring.app.model.
Open customer.java file and write the following code.

13m2$.'

_

}:

AON

1) Inside Customer class, Create private fields with their data types for id, name, email,

phone, and password.

private int id;
private String name;

Server and Web Application

60

BU/LD
CLUB reséémh @
park /

private String email;
private String phone;

private String password;

2) Create an empty constructor (Hibernate, which handles the JPA requires an empty
constructor).

public Customer() {}

3) Create a constructor with the arguments name, email, phone, password, and id.
Write the following code.

public Customer (String name, String email, String phone, String password, int

id) {
this.id = id;
this.name = name;
this.email = email;
this.phone = phone;
this.password = password;
}

4) Create accessor methods (i.e., getter and setter methods) for this field.

- The IDE can create accessor methods for you. In the editor, right-click on “value’
and choose Insert Code (or press Alt-Insert). In the popup menu, choose Getter
and Setter.

Server and Web Application 61

et
C

Ly
BUILD)

m (IIT™
resea rCh | INCUBATION
pa r k \ CELL
() File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help al Apache NetBeans IDE -
PEES D <aaconig> | @@ T T - s Ep- B ez, Co Co
Projects % | Services _ StatPage X [d Samy* ™ e e o - [€] Hoteljava % [&] SimpleControllerjava X v
g ® b source | Histoy |14) Generate Getters and Setters. X 0
o 13 ’
H] 20 puk q
: S
x ; @ o, st s |
=) 24 183 p: rdl: String
(718 phone: String

Output
Select All || Select None

Encapsulate Fields

Conce

o)
B

In the dialog that displays, select all the fields, then click Generate. The getValue()
and setValue() methods are added to the Customer class.

Step 5

Admin.java

In the Projects window, Inside project file > source packages > com.spring.app.model.
Open Admin.java file and write the following code.

1)

2)

3)

Server and Web Application

Inside Admin class, Create private fields with their data types for username, and

password.

private String username;

private String password;

Create an empty constructor (Hibernate, which handles the JPA requires an empty

constructor).

public Admin () {}

Create a constructor with the arguments name, email, phone, password, and id.

Write the following code.

62

BU/LD N
ctuB research | "
park . "/

public Admin (String username, String password) {
this.username = username;

this.password = password;

4) Create accessor methods (i.e., getter and setter methods) for this field.

- The IDE can create accessor methods for you. In the editor, right-click on ‘value’
and choose Insert Code (or press Alt-Insert). In the popup menu, choose Getter

and Setter.

O File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

AEHEY DO v - @ TH b4 B G

R C G

Projects X _ StatPage X [&] Samj ™" [&] Hoteljava % [&] SimpleControllerjava X [&] Adminjava X v

Source History | [
Select fields to generate getters and setters for:

(&) Favorites (5 Files

Output x
Select All || Select None

Encapsulate Fields

EY]
som T

- Inthe dialog that displays, select all the fields, then click Generate. The getValue()
and setValue() methods are added to the Admin class.

Step 6

Booking.java

In the Projects window, Inside project file > source packages > com.spring.app.model.
Open Booking.java file and write the following code.

1) Inside Booking class, create private fields with their data types for email, phone,
name, person, datetime, id, and customerid.

Server and Web Application 63

private
private
private
private
private
private

private

Fa?rlfll Iimy
String email;

String phone;

String name;

int person;

String datetime;

int id;

int customerid;

2) Create an empty constructor (Hibernate, which handles the JPA requires an empty

constructor).

public Booking() {}

3) Create a constructor with the arguments email, phone, name, person, datetime, id

and customerid. Write the following code.

public Booking(String email, String phone, String name, int person, String

datetime, int id, int customerid) {

this.email = email;

this.phone phone;

this.name = name;
this.person = person;
this.datetime = datetime;
this.id = id;

this.customerid = customerid;

4) Create accessor methods (i.e., getter and setter methods) for this field.

Server and Web Application 64

BUI/LD
CLUB rescla’zgmh @
park . "/

- The IDE can create accessor methods for you. In the editor, right-click on “value’
and choose Insert Code (or press Alt-Insert). In the popup menu, choose Getter
and Setter.

©) BB BB G Tmn e s Gn 0 0 o G G B e ——
<aturenty @ T B D% B B gy G G

_ StatPage X [&] Samp* ™" . e e . [&] Hoteljava % [&f SimpleControllerjava % v
(U Generate Getters and Setters. X

Source History

718 phone: Sting jtring datetime, int id, int customerid) (

. BEE
o

EEEE,

Select All || Select None

Encapsulate Fields

Concel

- Inthe dialog that displays, select all the fields, then click Generate. The getValue()
and setValue() methods are added to the Booking class.

Step 7

Hotel.java

In the Projects window, Inside project file > source packages > com.spring.app.model.
Open Hotel.java file and write the following code.

1) Inside Hotel class, create private fields with their data types for threshold.

private int threshold;

2) Create an empty constructor (Hibernate, which handles the JPA requires an empty
constructor).

public Hotel() {}

3) Create a constructor with the argument threshold. Write the following code.

Server and Web Application 65

public Hotel(int threshold) {

this.threshold = threshold;

4) Create accessor methods (i.e., getter and setter methods) for this field.

- The IDE can create accessor methods for you. In the editor, right-click on ‘value’
and choose Insert Code (or press Alt-Insert). In the popup menu, choose Getter
and Setter.

() File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help app - Apache NetBeans IDE 13 Q- Search (Ctrl+ -
— L " - T, Ereg - > v A+ il "
HMEES B <defsult config> O T H P& §) asogsase. (5 (b
Projects X Services Favorites Files _ StartPage * [d] SimpleControllerjava % |&] Hoteljava < v
@) app Source History |4 Bl () Generate Getters and Setters X 2
& Source Packages 3| O imporc java.io|
o com.spring.app 4 Select fields to generate getters and setters for:

[com.spring.app.model s —
B it (EeeE
B Bookingjave . [/180 threshold : int
[# Customer.java 2
[€ Hoteljava E)
9 com.spring.app.service 10 T
B TestPackages L
£ Other Sources e put
& Dependencies =
& Runtime Dependencies =
& Java Dependencies tf
2 & Project Files 1; ? ;
2pp 18
@ emarket 19 public Hotd
@ Source Packages v T his.

[com.spring.app
[sampleApplication java 2
[€] SimpleControllerjava 23
- [userMgtController java 24 }
[com.spring.app.model 25
B2 com.spring.app.senvice
@ Test Packages Output ¥ | Search Results -
7 Other Sources

B sre/main/resources Encapsulate Fields

[<default package»
B application properties Concel
& Dependencies
& Runtime Dependencies
& Java Dependencies
& Project Files
8 pomxml
() Notifications 233 INS
0208 AM
S o

i

- Inthe dialog that displays, select all the fields, then click Generate. The getValue()
and setValue() methods are added to the Hotel class.

Step 8

Create Spring Boot API Controller for admin and customer.

package is used to implement a Spring Boot RestAPI controller to handle all
incoming requests (post/get/put/delete) and response to rest-client.

Server and Web Application 66

%Ehglj ﬁ%nn (fiiéi:>
research |l
park \ "/

Admin

- Handling admin login

- List bookings

- Clear bookings
Customer

- Handling customer login

- Handling customer register
- Book a Slot

- Check booking availability.
- Check user already exists.

Handling admin login

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")
@RequestMapping(value = "/login", method = RequestMethod.POST)
public int adminLogin(@RequestBody Admin admin) {
int result = BEObj.adminLogin(admin);
return result;

}

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping ("/login") annotation sets the base path to the resource endpoints in
the controller as /login.

@RequestMapping (method = RequestMethod.POST is used to map HTTP POST request to
the mapped controller methods. We used it to send username and password of a
merchant.

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/login” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes

Server and Web Application 67

“THE

BUI/LD - -
C-LU B resea rCh \ IV\C&J}L’EAL.TL\ON
park \ "/

it to the adminLogin method.

List bookings

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")
@RequestMapping(value = "/viewbooking", method = RequestMethod.GET)
public List<Booking> viewBooking() {

List<Booking> result = BEObj.viewBooking();

return result;

}

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping ("/viewbooking") annotation sets the base path to the resource
endpoints in the controller as /login.

@RequestMapping (method = RequestMethod.GET), and is used to map HTTP GET
requests to the mapped controller methods. We used it to return all the bookings.

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/viewbookings” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes
it to the viewBooking method.

Clear bookings

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")
@RequestMapping(value = "/clearbookings", method = RequestMethod.POST)
public int clearBookings() {

int result = BEObj.clearBookings();

Server and Web Application 68

BU/LD
CLUB reséémh @
park /

return result;

}

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping ("/clearbookings™) annotation sets the base path to the resource
endpoints in the controller as /clearbookings.

@RequestMapping (method = RequestMethod.POST is used to map HTTP POST request to
the mapped controller methods. We used it to clear bookings.

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/clearbookings” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes
it to the clearBookings method.

Handling customer login

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")
@RequestMapping(value = "/customerlogin", method = RequestMethod.POST)
public JSONObject customerLogin(@RequestBody Customer customer) {
JSONObject result = BEObj.customerLogin(customer);

return result;

}

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping ("/customerlogin”) annotation sets the base path to the resource
endpoints in the controller as /customerlogin.

@RequestMapping (method = RequestMethod.POST is used to map HTTP POST request to
the mapped controller methods. We used it to send username and password of a
merchant.

Server and Web Application 69

THE
U by o

LU reséé

QH

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/customerlogin” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes
it to the customerLogin method.

Handling customer register

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")
@RequestMapping(value = "/customerregister"”, method = RequestMethod.POST)
public int customerRegister(@RequestBody Customer customer) {

int result = BEObj.customerRegister(customer);

return result;

}

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping ("/customerregister") annotation sets the base path to the resource
endpoints in the controller as /customerregister.

@RequestMapping (method = RequestMethod.PoST is used to map HTTP POST request to
the mapped controller methods. We used it to send details of a customer.

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/customerregister” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes
it to the customerRegister method.

Book a Slot

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")

Server and Web Application 70

THE

U
CLU rescla’é rch @

@RequestMapping(value = "/createbooking", method = RequestMethod.POST)
public int createBooking(@RequestBody Booking booking) {
int result = BEObj.createBooking(booking);

return result;

}

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping ("/createbooking”) annotation sets the base path to the resource
endpoints in the controller as /createbooking.

@RequestMapping (method = RequestMethod.PoST is used to map HTTP POST request to
the mapped controller methods. We used it to send details of bookings.

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/createbooking” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes
it to the createBooking method.

Check booking availability.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")
@RequestMapping(value = "/checkavailability", method = RequestMethod.POST)
public int checkAvailability(@RequestBody Hotel hotel) {
int result = BEObj.checkAvailability(hotel.getThreshold());

return result;

}

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping ("/checkavailability") annotation sets the base path to the
resource endpoints in the controller as /checkavailability.

Server and Web Application 71

THE

u
CLU resc'a’zgmh
park . "/

@RequestMapping (method = RequestMethod.POST is used to map HTTP POST request to
the mapped controller methods. We used it to send threshold of hotel.

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/checkavailability” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes
it to the checkAvailability method.

Check user already exists.

@CrossOrigin(origins = "*")
@RequestMapping(value = "/checkuser", method = RequestMethod.POST)
public int checkUser(@RequestBody String email) {
int result = BEObj.checkUser(email);

return result;

}

@RestController: This annotation marks the SimpleController as an HTTP request
handler and allows Spring to recognize it as a RESTful service.

@RequestMapping ("/checkuser") annotation sets the base path to the resource
endpoints in the controller as /checkuser.

@RequestMapping (method = RequestMethod.PoST is used to map HTTP POST request to
the mapped controller methods. We used it to send email of a single customer.

@RequestBody: This annotation takes care of binding the web request body to the
method parameter with the help of the registered HttpMessageConverters. So, when
you make a POST request to the “/checkuser” URL with a Post JSON body, the
HttpMessageConverters converts the JSON request body into a Post object and passes
it to the checkUser method.

Step 9

Implement a method to handle admin login.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

Server and Web Application 72

BU/LD o\
itm,
String s = "select count(*) from admin where admusername=? AND admpassword=?";

int count = 9;

try {
count = jdbc.queryForObject(s, new Object[]{admin.getUsername(),

admin.getPassword()}, Integer.class);

} catch (Exception e) {
System.out.println("Exception” + e);
count = 0;

}

if (count == 1) {
return SUCCESS;

} else {

return FAILURE;

Inside adminLogin method is where you create the query to count data values from the
admin table.

The SQL SELECT statement can be used along with COUNT (*) function to count of all
rows present in the admin table and SQL query that returns a value object like String
then you can use the queryForObject() method of JdbcTempalte class. This method
takes an argument about what type of class query will return and then convert the
result into that object and returns it to the caller.

Implement a method to list bookings.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

String s = "select bkgid AS id, bkgname AS name, bkgemail AS email, bkgphone AS
phone, bkgfromdatetime AS datetime, bkgnoofperson AS person from booking";
List<Booking> bklist;

try {

Server and Web Application 73

BU/LD
CLUB researeh @
park J

bklist = jdbc.query(s, new BeanPropertyRowMapper(Booking.class));
} catch (Exception e) {

System.out.println("Exception” + e);

bklist = null;

}

return bklist;

Inside viewBookings method is where you create the query to return a list of bookings
from the booking table.

The SQL string contains a query to select all the booking details from the booking table
and if your SQL query is going to return a List of objects instead of just one object then
you need to use the query () method of JdbcTempalte. These methods provide to
convert the result to a custom object. For instance, the simplest way to query and
handle results is via the query (String, RowMapper) method. This method uses
RowMapper to map the returned row to an object.

Implement a method to clear bookings.

In the Projects window, Inside project file > source packages > com.spring.app. Open
simpleBE.java file and write the following code.

String s = "delete from booking";

int resultRec

0;

try {
resultRec = jdbc.update(s);

} catch (Exception e) {
System.out.println("Exception” + e);
resultRec = 0;

}

if (resultRec == 1) {
return SUCCESS;

} else {

return FAILURE;

Server and Web Application 74

BUILD
CLUB rescla’é , /\
}

Inside clearBookings method is where you create the query to delete bookings from the
booking table.

Create a SQL string to delete all the bookings from booking table. Call the update
method of JdbcTemplate and pass the string to be bound to the query.

Implement a method to handle customer login.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

String s = "select cstid AS id from customer where cstemail='" + customer.getEmail()

+ "' AND cstpassword='" + customer.getPassword() + 5

List customerlist;

try {

customerlist = jdbc.query(s, new BeanPropertyRowMapper(Customer.class));
JSONObject json = new JSONObject();
if (!customerlist.isEmpty()) {
json.put("CustomerID", customerlist);
System.out.println("json = " + json);
return json;
}
} catch (Exception e) {
System.out.println("Exception” + e);
customerlist = null;

}

return null;

Inside customerLogin method is where you create the query to return customer details
as list from the customer table.

The SQL s string contains a query to select the customer ID by email and password from
the customer table and if your SQL query is going to return a List of objects instead of

Server and Web Application 75

THE

u
CLU resc'a’zgmh
park . "/

just one object then you need to use the query () method of JdbcTempalte. These
methods provide to convert the result to a custom object. For instance, the simplest
way to query and handle results is via the query (String, RowMapper) method. This
method uses RowMapper to map the returned row to an object.

Implement a method to handle customer register.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

String s = "insert into

customer(cstname,cstemail, cstphone,cstpassword)values(?,?,?,?)";

int insert 0;

try {
insert = jdbc.update(s, customer.getName(), customer.getEmail(),
customer.getPhone(), customer.getPassword());
} catch (Exception e) {

System.out.println("Exception” + e);

insert 0;

}

if (insert == 1) {
return SUCCESS;

} else {

return FAILURE;

}

Inside customerRegister method is where you create the query to create a customer in
the customer table.

The update method provided by JdbcTemplate can be used for insert, update, and
delete operations.

The SQL string is used to perform a single insert operation. Here '?' means it acts as the

parameter which we need to pass while executing the query. Now to execute the query,

Server and Web Application 76

BUI/LD
CLUB reséémh @
park /

we have used the JdbcTemplate update() method, which takes the query as an
argument, and other than the query there are 4 values that correspond to 4 '?"
respectively.

Implement a method to create bookings.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

String s = "insert into

booking(bkgname,bkgemail,bkgphone, bkgnoofperson, bkgfromdatetime,bkgcstid)values(?,?,

PoBoBoP) 8
int insert = 0;
try {
insert = jdbc.update(s, booking.getName(), booking.getEmail(),

booking.getPhone(), booking.getPerson(), booking.getDatetime(),
booking.getCustomerid());
} catch (Exception e) {
System.out.println("Exception” + e);

insert 0;

}

if (insert == 1) {
return SUCCESS;

} else {

return FAILURE;

}

Inside createBooking method is where you create the query to create a booking in the
booking table.

The update method provided by JdbcTemplate can be used for insert, update, and
delete operations.

The SQL string is used to perform a single insert operation. Here '?' means it acts as the

Server and Web Application 77

0
=
C
W
'CJQJH-

rk

I
h \ IMUL ww

parameter which we need to pass while executing the query. Now to execute the query,

we have used the JdbcTemplate update() method, which takes the query as an
argument, and other than the query there are 6 values that correspond to 6 '?"
respectively.

Implement a method to check booking availability.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

String s = "select htlthreshold AS threshold from hotel";
List<Hotel> thresholdlist = jdbc.query(s, new
BeanPropertyRowMapper(Hotel.class

))s

int availability = thresholdlist.get(@).getThreshold();

System.out.println("availability = " + availability);

String t = "select sum(bkgnoofperson) AS person from booking";

long thresholddblist = @;

if (jdbc.queryForObject(t, Long.class) != null) {
thresholddblist = jdbc.queryForObject(t, Long.class);

}

int reserved = 0;

if (thresholddblist > 9) {
reserved = Integer.parselnt(thresholddblist + "");

System.out.println("reserved = " + reserved);

}

int totalperson = reserved + threshold;
System.out.println("totalperson = " + totalperson);
if (availability >= totalperson) {

return FAILURE;

} else {

Server and Web Application

78

BU/LD
ctuB rescla,zgmh @
park . "/

return SUCCESS;
¥

Inside checkAvailability method is where you create the query to create check
availability in the booking table.

The SQL s string contains a query to select the htlthreshold from the hotel table and if
your SQL query is going to return a List of objects instead of just one object then you
need to use the query () method of JdbcTempalte. These methods provide to convert
the result to a custom object. For instance, the simplest way to query and handle
results is via the query (String, RowMapper) method. This method uses RowMapper to
map the returned row to an object.

The SQL t string contains a query to select the bkgnoofperson from the booking table
and SQL query that returns a value object like String then you can use the
queryForObject() method of JdbcTempalte class. This method takes an argument about
what type of class query will return and then convert the result into that object and
returns it to the caller.

Implement a method to check user already exists.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleBE.java file and write the following code.

JSONParser parser = new JSONParser();
JSONObject emailObj = null;
try {
emailObj = (JSONObject) parser.parse(email);
} catch (Exception e) {
e.printStackTrace();
}
String InputEmail = emailObj.get("email").toString();
String s = "select count(*) from customer WHERE cstemail=?";
int count = jdbc.queryForObject(s, new Object[]{InputEmail}, Integer.class);
System.out.println("count = " + count);

if (count == 1) {

Server and Web Application 79

return SUCCESS;
} else {

return FAILURE;

}

Inside checkUser method is where you create the query to create a check user already
exists in the customer table.

The SQL SELECT statement can be used along with COUNT (*) function to count of all
rows present in the customer table and SQL query that returns a value object like String
then you can use the queryForObject() method of JdbcTempalte class. This method
takes an argument about what type of class query will return and then convert the
result into that object and returns it to the caller.

Configure pom.xml.

In the Projects window, Inside project file > Project Files. Open pom. xm1 file.

For handling the web-request and doing CRUD operations with MariaDB database, we
need the supporting of 3 Spring Boot dependencies: spring-boot-starter-|
and \spr‘ing-boot-starter-data-jdbc

mariadb|

r

Configure Spring Data source.

application. Properties|is used to add the Spring Boot application's configurations
such as: database configuration.

In the Projects window, Inside project file > other sources > src/main/resources >
default package. Open application. properties file.

Since we're using MariaDB as our database, we need to configure the database URL,
username, and password so that Spring can establish a connection with the database on
startup.

spring.datasource.url=jdbc:mariadb://localhost:3306/<MariaDB database name>
spring.datasource.username=< MariaDB username>
spring.datasource.password=< MariaDB password>

spring.datasource.driver-class-name=org.mariadb.jdbc.Driver

Server and Web Application 80

BU/LD
CLUB resé’gmh [1 UBATION
park .
Step 9

Run the Spring Boot Project file.

Right-click on the project file and click on “Clean and Build”.

Deploying war file in the resin.

1) Go to your spring boot project directory and inside target folder you will get war
file.

2) Copy the .war file (E.g.: webapp.war) to
$/home/webapp/resin/webapps

3) Start the resin server as root user.

4) switch to the root user.

[webapp@localhost ~]$ sudo su

SIMLUI[root@localhost ~]$ /home/webapp/resin/bin/./resin.sh start

Your .war file will be extracted automatically to a folder that has the same name
(without extension) (E.g.: webapp)

Creating a database for Restaurant table reservation web application
in PostgreSQL.

Create a webapp database and Create admin, customer, hotel and booking table,
populate the table with data, retrieve and store data for future use, or delete if needed.

Step 1

Database Design

Server and Web Application 81

‘rE

BU/LD e
CLtUB reséé Fa?rlfll H"EM‘/
—| customer v _| booking v

cstid BIGINT bkgid BIGINT
cstname VARCHAR(45) ! customerid BIGINT
catphone VW ARCHAR(45) g 1 hotelid BIGINT
cstem al VARCHAR(45) bkgname V ARCHAR{45)
cstusernam e VARCHAR(45) bkgem &l VARCHAR{45)
cstpamsword VARCHAR({45) bkophone V ARCHAR{45)
> H- < bkgfromdatetime ¥ ARCHAR(45)
bkotodatetime V ARCHAR(45)
bkanoofperson VARCH AR.(45)
— hotel v >
htlid BIGINT
htiname VARCHAR{45) _| admin v
htladdress ¥ ARCHAR(45) 4 admid BIGINT
htlcapacity ¥V ARCHAR(45) admusername Y ARCHAR(45)
htlthreshold v ARCHAR{45) admpassword ¥V ARCHAR(45)
(3 (3
Step 2

Start the MariaDB shell.

1) At the command prompt, run the following command to launch the MariaDB shell
and enter it as the root user:

[root@webapp ~]$ /usr/bin/mysql -u root -p

2) When you’re prompted for a password, enter the one that you set at installation,
or if you haven’t set one, press Enter to submit no password.

The following shell prompt should appear:

MariaDB [(none)]>

Server and Web Application 82

Step 3

Create a database called webapp:

MariaDB [(none)]> CREATE SCHEMA webapp;

MariaDB [(none)]> USE webapp;

Step 4

Create a table called admin:

MariaDB [webapp]> CREATE TABLE admin (

admid INT NOT NULL AUTO_INCREMENT,
admusername VARCHAR(50) NOT NULL,
admpassword VARCHAR(40) NOT NULL,

PRIMARY KEY (admid)

)5

n u

In the admin table “admid”, “admusername”, “admpassword” represents the name of
the columns. INT and VARCHAR are data types and NOT NULL defines the column
constraint, NOT NULL means no acceptance of NULL values in that column. Here,
“admid” is defined as the Primary Key Column. The primary key column is used for
distinguishing a unique row in a table. AUTO_INCREMENT to create a column whose
value can be set automatically from a simple counter. You can only use
AUTO_INCREMENT on a column with an integer type. The column must be a key, and
there can only be one AUTO_INCREMENT column in a table.

83

BU/LD
CLUB rescle’zzlcmh [ncfion
park . "/
Step 5

Create a table called customer:

CREATE TABLE customer (

cstid INT NOT NULL AUTO_INCREMENT,
cstname VARCHAR(50) NOT NULL,
cstemail VARCHAR(4@) NOT NULL,
cstphone BIGINT(10) NOT NULL,
cstpassword VARCHAR(40) NOT NULL,

PRIMARY KEY (cstid),

CONSTRAINT uniqueemail UNIQUE (cstemail)

)5

n u ”n u

In the admin table “cstid”, “cstname”, “cstemail”, “cstphone”, “cstpassword”
represents the name of the columns. INT, BIGINT and VARCHAR are data types and NOT
NULL defines the column constraint, NOT NULL means no acceptance of NULL values in
that column. Here, “cstid” is defined as the Primary Key Column. The primary key
column is used for distinguishing a unique row in a table. AUTO_INCREMENT to create a
column whose value can be set automatically from a simple counter. You can only use
AUTO_INCREMENT on a column with an integer type. The column must be a key, and
there can only be one AUTO_INCREMENT column in a table. UNIQUE to specify that all
values in the cstemail column must be distinct from each other. For UNIQUE indexes,
you can specify a name for the constraint, using the CONSTRAINT keyword. That name
will be used in error messages.

84

BU/LD
CLUB resé’gmh (1ffton
park . "/
Step 6

Create a table called booking:

CREATE TABLE booking (

bkgid INT NOT NULL AUTO_INCREMENT,
bkgname VARCHAR(50) NOT NULL,
bkgemail VARCHAR(40) NOT NULL,
bkgphone BIGINT(10) NOT NULL,
bkgfromdatetime DATETIME,
bkgnoofperson BIGINT NOT NULL,
bkgcstid INT NOT NULL,

PRIMARY KEY (bkgid, bkgcstid),

foreign key(bkgcstid) references customer(cstid)

)5

In the booking table “bkgid”, “bkgname”, “bkgemail”, “bkgphone”, “bkgfromdatetime”,
“bkgnoofperson”, “bkgcstid” represents the name of the columns. INT, BIGINT and
VARCHAR are data types and NOT NULL defines the column constraint, NOT NULL
means no acceptance of NULL values in that column. Here, “bkgid”, “bkgcstid” are
defined as the Primary Key Column. The primary key column is used for distinguishing a
unique row in a table. AUTO_INCREMENT to create a column whose value can be set
automatically from a simple counter. You can only use AUTO_INCREMENT on a column
with an integer type. The column must be a key, and there can only be one
AUTO_INCREMENT column in a table. The bkgcstid column is the foreign key column
that references the cstid column of the customer table.

85

BU/LD
CtUB rescle’zzlcmh [ncgion
park . "/
Step 7

Create a table called hotel:

CREATE TABLE hotel (

htlid INT NOT NULL AUTO_INCREMENT,
htlname VARCHAR(50) NOT NULL,
htladdress VARCHAR(40) NOT NULL,
htlcapacity BIGINT NULL,

htlthreshold BIGINT NOT NULL,

PRIMARY KEY (htlid)

)5

In the hotel table “htlid”, “htlname”, “htladdressl”, “htlcapacity”, “htlthreshold”
represents the name of the columns. INT, BIGINT and VARCHAR are data types and NOT
NULL defines the column constraint, NOT NULL means no acceptance of NULL values in
that column. Here, “htlid” is defined as the Primary Key Column. The primary key
column is used for distinguishing a unique row in a table. AUTO_INCREMENT to create a
column whose value can be set automatically from a simple counter. You can only use
AUTO_INCREMENT on a column with an integer type. The column must be a key, and
there can only be one AUTO_INCREMENT column in a table.

Step 8

1) Insert a record into the admin table.

INSERT INTO admin (admusername, admpassword) VALUES ('admin@gmail.com',
"admin@l123');

86

BU/LD
CLUB resé’gmh [1 UBATION
park

The ‘admin’ is an already created table. Now we are adding a new row of records under
the respective columns with the corresponding values: ‘admin@gmail.com’ and
‘admin@123.

2) Verify the insertion, using the SELECT statement.

SELECT * FROM admin;

Step 9

1) Insert a record into the hotel table.

INSERT INTO hotel (htlname, htladdress, htlcapacity, htlthreshold)
ALUES ('Grill box', 'Adyar', 50, 10);

The ‘hotel’ is an already created table. Now we are adding a new row of records under
the respective columns with the corresponding values: ‘Grill Box’, ‘Adyar’ 50 and 10.

2) Verify the insertion, using the SELECT statement.

SELECT * FROM hotel;

Testing the web application.

Perform functional tests and validate if everything works according to requirements.

Run the React App

1) Open the command prompt, on the root of the React JS project, execute the
following command.

Using npm start

[webapp@localhost ~]$ /home/webapp/reactapp/npm start

Server and Web Application 87

BU/LD
CLUB resé’gmh \/l \Iu TION
park

Start the resin server.

1) switch to the root user.

[webapp@localhost ~]$ sudo su

ARO[root@localhost ~] $/home/webapp/resin/bin/./resin.sh start

Additional Tasks

1) Allocating Restaurant Table & Time slots
2) Multiple restaurants listing

3) Multiple restaurants management

Server and Web Application

88

