IIT™

H | t| N INCUBATION
U!LD CELL
CLUB rese%racrlfll(‘

Build an E-marketplace mobile application.

A

- -

INdigrai®

CUSTOMER LOGIN

Your Email

Password

Merchant Login

&

E-Marketplace

“I'H
BU/LD
CLUB

IIT™

| tm INCUBATION
research |\ <
park

Introduction to the

course:

Building customer-facing e-marketplace application
from scratch using Flutter framework, Java, and the
Spring Boot environment to create a robust backend

supporting payments with Razor pay payment gateway.

What does this course

aim to achieve?

In this course, you’ll build a full-stack e-marketplace
application which require full-stack development,
involving a backend to handle users, inventory, and
payments, and a frontend for customers to view
products, manage their cart, and checkout using razor

pay. User profiles will also store order history.

What is being built in

this course

E-marketplace mobile application integrated with

Razor pay payment gateway.

How is it being tested

1 Install the generated .APK file onto an Android
device.

2 Open the postman REST client and test the APIs.

3 Make a test payment to verify the Razor pay

payment gateway integration

Course Prerequisites

Basic knowledge of Dart language

Basic Java programming

E-Marketplace

IIT™

lI'H m

i | t INCUBATION
BUI/LD ELL
CLUB resedad I’acr|’|](‘

Contents

Prerequisites
Components
Software

Building the frontend of E-marketplace mobile

application using Flutter framework.
- Installing Flutter and Android Studio
- Creating a responsive E-marketplace mobile application.
- Importing the Project

Building the backend of E-marketplace using Spring

Boot framework.
- Installing Java SE 13 (JDK)
- Installing Apache NetBeans IDE
- Importing the Project
- Installing Resin

- Deploying war file in the resin.

Creating a database for E-marketplace in PostgreSQL.

Testing the backend with the mobile application.

E-Marketplace

“I'H
BU/LD

| tm INCUE%\ON

U rese?)racrlfl](CELL
Prerequisites:
TOPIC LINK

Introduction to Flutter

https://docs.flutter.dev/

Create a Flutter Project

from Scratch

Flutter Tutorial Part 1: Build a Flutter App From Scratch - DZone

Add to the app using the https://docs.flutter.dev/development/tools/pubspec
Pub spec file
Flutter Logo: https://www.geeksforgeeks.org/flutter-flutterlogo-widget

Flutter Toaster

https://pub.dev/packages/fluttertoast

Flutter Drawer

https://docs.flutter.dev/cookbook/design /drawer

Shared preferences

https://blog.logrocket.com /using-sharedpreferences-in-

flutter-to-store-data-locally/

Widgets

https://docs.flutter.dev/development/ui/widgets-intro/

Container

https://api.flutter.dev/flutter /widgets/Container-class.html

Row and Column

https://www.geeksforgeeks.org/row-and-column-widgets-in-

flutter-with-example/

Expanded Widget

https://api.flutter.dev/flutter /widgets /Expanded-class.html

Floating Action Button

https://api.flutter.dev/flutter /material /FloatingActionButton-

class.html

List Tile Widgets

https://api.flutter.dev/flutter/material /ListTile-class.html

Card Widget https://api.flutter.dev/flutter/material /Card-class.html
List view https://api.flutter.dev/flutter /widgets /ListView-class.html
Grid View https://api.flutter.dev/flutter /widgets /GridView-class.html

Custom Fonts

https://docs.flutter.dev/cookbook/design /font

Material Icons

https://docs.flutter.dev/development/ui/widgets /material

Making Responsive App https://docs.flutter.dev/release /breaking-changes/buttons
https://api.flutter.dev/flutter /widgets/Stateful Widget-
Stateful Widget

class.html

E-Marketplace

https://docs.flutter.dev/
https://dzone.com/articles/flutter-tutorial-part-1-build-a-flutter-app-from-s
https://docs.flutter.dev/development/tools/pubspec/
https://blog.logrocket.com/using-sharedpreferences-in-flutter-to-store-data-locally/
https://blog.logrocket.com/using-sharedpreferences-in-flutter-to-store-data-locally/
https://docs.flutter.dev/development/ui/widgets-intro/
https://api.flutter.dev/flutter/widgets/Container-class.html
https://www.geeksforgeeks.org/row-and-column-widgets-in-flutter-with-example/
https://www.geeksforgeeks.org/row-and-column-widgets-in-flutter-with-example/
https://api.flutter.dev/flutter/widgets/Expanded-class.html
https://api.flutter.dev/flutter/material/FloatingActionButton-class.html
https://api.flutter.dev/flutter/material/FloatingActionButton-class.html
https://api.flutter.dev/flutter/material/ListTile-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://docs.flutter.dev/development/ui/widgets/material

IIT™

H | t INCUBATION
BUILD AU
B resea rcrfl1(‘

https://api.flutter.dev/flutter /widgets /StatelessWidget-
Stateless Widget B T

Text Field https://docs.flutter.dev/cookbook/forms /text-field-changes/

API
https://www.tutorialspoint.com /flutter /flutter accessing rest
api.htm/

JSON https://docs.flutter.dev/development/data-and-backend/json/
https://blog.logrocket.com /how-parse-json-strings-flutter
https://medium.com/flutter-community/flutter-part-4-fetch-
data-from-the-network-1b5949d84d44 /

Cart Feature https://www.dbestech.com /tutorials /how-to-remove-an-item-
from-dart-list-flutter/

Components

Components Quantity

Window 10 / Linux 64-bit Pc or
Laptop

e RAM:
Min: 8GB

Recommended: 16GB
1 No

e Free Disk Space:

E-Marketplace

https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://docs.flutter.dev/cookbook/forms/text-field-changes/
https://www.tutorialspoint.com/flutter/flutter_accessing_rest_api.htm/
https://www.tutorialspoint.com/flutter/flutter_accessing_rest_api.htm/
https://docs.flutter.dev/development/data-and-backend/json/
https://blog.logrocket.com/how-parse-json-strings-flutter/
https://medium.com/flutter-community/flutter-part-4-fetch-data-from-the-network-1b5949d84d44/
https://medium.com/flutter-community/flutter-part-4-fetch-data-from-the-network-1b5949d84d44/
https://www.dbestech.com/tutorials/how-to-remove-an-item-from-dart-list-flutter/
https://www.dbestech.com/tutorials/how-to-remove-an-item-from-dart-list-flutter/

IIT™

h INCUBATION

: tm
BU/LD
CLUB fes€arcia

Min: 10GB
Recommended: 30GB

e Screen Resolution:
Min: 1280x800px

Recommended: 1920x1080px

Software

Software Download Link
Android https://developer.android.com/studio
Studio IDE
and SDK

Flutter SDK | https://docs.flutter.dev/get-started /install

Java SE 13 https://www.oracle.com/java/technologies/javase/jdk13-

archive-downloads.html

Apache https://netbeans.apache.org/download/index.html
NetBeans
Resin www.caucho.com/resin-4.0/admin/starting-resin.xtp

PostgreSQL | https://www.postgresql.org/download/

E-Marketplace

https://developer.android.com/studio
https://docs.flutter.dev/get-started/install
https://www.oracle.com/java/technologies/javase/jdk13-archive-downloads.html
https://www.oracle.com/java/technologies/javase/jdk13-archive-downloads.html
https://netbeans.apache.org/download/index.html
https://www.caucho.com/resin-4.0/admin/starting-resin.xtp
https://www.postgresql.org/download/

IIT™

h INCUBATION

: tm
BU/LD
CLUB fes€arcia

Part- A Build the frontend of E-marketplace mobile application.

Building the frontend of E-marketplace mobile application using Flutter

framework.

Installing Flutter and Android Studio:

1.System requirements:

To install and run Flutter, your development environment must meet these

minimum requirements:

Operating Systems: Windows 7 SP1 or later (64-bit), x86-64 based.

Disk Space: 1.64 GB (does not include disk space for IDE/tools).

Tools: Flutter depends on these tools being available in your environment.
Windows PowerShell 5.0or newer (this is pre-installed with Windows 10)

Git for Windows 2.x, with the Use Git from the Windows Command Prompt
option. If Git for Windows is already installed, make sure you can run git

commands fromthe command prompt or PowerShell.

2.Get the Flutter SDK:

1. Download the following installation bundle to get the latest stable
release of the

2. FlutterSDK:
https://storage.googleapis.com/flutter infra release/releases/stabl
e/windows/ flutter windows 2.10.3-stable.zip

3. Extract the zip file and place the contained flutterin the desired installa-
tion location forthe Flutter SDK (for example, C:\Users\<your-user-
name>\Documents).

4. If you don’t want to install a fixed version of the installation bundle, you
can skip steps 1 and 2. Instead, get the source code from the
https://github.com/flutter/flutter on GitHub, andchange branches or
tags as needed. For example: git clone
https://github.com/flutter/flutter.git -b stable

You are now ready to run Flutter commands in the Flutter Console.

E-Marketplace

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-windows-powershell
https://git-scm.com/download/win
https://storage.googleapis.com/flutter_infra_release/releases/stable/windows/flutter_windows_2.10.3-stable.zip
https://storage.googleapis.com/flutter_infra_release/releases/stable/windows/flutter_windows_2.10.3-stable.zip
https://storage.googleapis.com/flutter_infra_release/releases/stable/windows/flutter_windows_2.10.3-stable.zip
https://github.com/flutter/flutter

IIT™

h INCUBATION

: tm
BU/LD
CLUB fes€arcia

3.Update vour path.

If you wish to run Flutter commands in the regular Windows console, take
these steps to addFlutter to the PATHenvironment variable:

+ From the Start search bar, enter ‘env’ and select Edit environment
variables for youraccount.

+ Under User variables check if there is an entry called Path:

+ If the entry exists, append the full path to flutter\bin using;as a separator
from existing values.

+ Ifthe entry doesn't exist, create a new user variable named Pathwith the
full path to flutter\binas its value.

You must close and reopen any existing console windows for these changes to
take effect.

4.Run flutter doctor.

From a console window that has the Flutter directory in the path (see
above), run the followingcommand to see if there are any platform
dependencies you need to complete the setup:

C:\src\flutter>flutter doctor

This command checks your environment and displays a report of the status of
your Flutter installation. Check the output carefully for other software you
might need to install or further tasks to perform.

For example:

[-] Android toolchain - develop for Android devices.

- Android SDK at D:\Android\sdk
X Android SDK is missing command line tools; download from

https://goo.gl/XxQghQ
- Tryre-installing or updating your Android SDK,
visit https://docs.flutter.dev/setup/#android-setup for

detailedinstructions.

The following sections describe how to perform these tasks and finish the
setup process. Once youhave installed any missing dependencies, you can run
the flutter doctor command again to verify that you’ve set everything up
correctly.

E-Marketplace

IIT™

h INCUBATION

| 1tm
BU/LD
CLUB fes€arcia

5.Install Android Studio

1. Download and install Android studio.

2. Start Android Studio and go through the ‘Android Studio Setup Wiz-
ard’. This installs thelatest Android SDK, Android SDK Command-line
Tools, and Android SDK Build-Tools, which are required by Flutter
when developing for Android.

3. Run flutter doctor to confirm that Flutter has located your installation of
AndroidStudio. If Flutter cannot locate it, run flutter config — android
https://developer.android.com/studio-studio-dir.

<directory>to set the directory that Android Studio is installed to.

6.Set up an Android device:

To prepare to run and test your Flutter app on an Android device, you need
an Android devicerunning Android 4.1 (API level 16) or higher.

1. Enable Developer options and USB debugging on your device. De-
tailed instructions areavailable in the Android Documentation.

2. Windows-only: Install the Google USB driver.

3. Using a USB cable, plug your phone into your computer. If prompt-
ed on your device,authorize your computer to access your device.

4. In the terminal, run the flutter devicescommand to verify that Flut-
ter recognizesyour connected Android device. By default, Flutter
uses the version of the Android SDKwhere your adb tool is based.
If you want Flutter to use a different installation of the Android
SDK, you must set the ANDROID_SDK_ROOT environment variable
to that installation directory.

7.Set up the Android emulator.

To prepare to run and test your Flutter app on the Android emulator; follow
these steps:

e Enable VM acceleration on your machine.

e Launch Android Studio, click the AVD Manager icon, and select Create
Virtual Device...

e In older versions of Android Studio, you should instead launch Android
Studio >Tools > Android > AVD Manager and select Create Virtual De-
vice.... (The Android submenu is only present when inside an Android
project.)

E-Marketplace

https://developer.android.com/studio

IIT™

h INCUBATION

: tm
BU/LD
CLUB fes€arcia

e Ifyou do not have a project open, you can choose Configure > AVD Man-
ager andselect Create Virtual Device...
e Choose a device definition and select Next.

e Select one or more system images for the Android versions you want to
emulate and select.

Next. An x86 or x86_64 image is recommended.

e Under Emulated Performance, select Hardware - GLES 2.0 to
enable hardware acceleration.
e Verify the AVD configuration is correct and

select Finish.
For details on the above steps, see Managing
AVDs.

e In Android Virtual Device Manager, click Run in the toolbar. The emu-
lator starts up anddisplays the default canvas for your selected OS
version and device.

8.Agree to Android Licenses

Before you can use Flutter, you must agree to the licenses of the Android SDK
platform. This stepshould be done after you have installed the tools listed above.

1. Make sure that you have a version of Java 8 installed and that your JA-
VA_HOME environment variable is set to the JDK’s folder.

Android Studio versions 2.2 and higher come with a JDK, so this should already
be done.

2. Open an elevated console window and run the following command begin.

3. signing licenses.flutter doctor —android-licenses.
4. Review the terms of each license carefully before agreeing to them.

5. Once you are done agreeing with licenses, run flutter doctoragain to
confirm thatyou are ready to use Flutter.
9.Install the Flutter and Dart plugins.

The installation instructions vary by platform.

10
E-Marketplace

B‘[JI}IED | tmh INCUEXITION
researc CeLL

CLUB park

Mac

Use the following instructions for macOS:

. Start Android Studio.
. Open plugin preferences (Preferences > Plugins as of v3.6.3.0 or later).

1

2

3. Select the Flutter plugin and click Install.

4. Click Yes when prompted to install the Dart plugin.
5. Click Restart when prompted.

Linux or Windows
Use the following instructions for Linux or Windows:
1. Open plugin preferences (File > Settings > Plugins).
2. Select Marketplace, select the Flutter plugin and click Install.
10.Configure Android Studio for Flutter Development:

After installing Dart and Flutter plugins create a flutter app to check if it is
workingproperly or not, to do so follow the steps mentioned below:

1: Open the IDE and select Start a new Flutter project
Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window |

<! -
New Flutter Project...

& Open...

S |& Profile or debug APK Import Project... ends
E_, Open Recent > Project from Version Control... (
;I Close Project New Module... this
A Settings... Ctrl+Alt+S Import Module...
o B Project Structure... Ctrl+Alt+Shift+S Import Sample...
&
g Other Settings P € Java Class

2: Select the Flutter Application as the project type. Then click Next.

Create New Flutter Project
Q New Flutter Project

< I ¢ o< =<

E-Marketplace

11

i reséqé\[mh b
gCruB park

3: Verify the Flutter SDK path specifies the SDK’s location (select Install SDK...
if the textfield is blank).

. Create New Flutter Project X

ﬁ(j New Flutter Application

Project name

fluﬂerjpp‘

Flutter SDK path

C\flutter v || .| & install SDK..

Project location

CA\Users\msaur\AndroidStudioProjects

Description

A new Flutter application.

D Create project offline

Previous Next Cancel Finish

4: Enter a project name (for example, myapp). Then click Next.

. Create New Flutter Project X

&) New Flutter Application

Set the package name

Applications and plugins need to generate platform-specific code

Package name

‘ ccm.example.ﬂuﬂerapd

AndroidX
Use androidx.* artifacts

Platform channel language
Include Kotlin support for Android code
Include Swift support for iOS code

Previous Next Cancel

5: Click Finish.

12
E-Marketplace

IIT™

H | t| N INCUBATION
BUI/LD SELL
CLUuB researacrfl1((

6: Wait for Android Studio to install the SDK and create the project.

Note: When creating a new Flutter app, some Flutter IDE plugins ask for a
company domain namein reverse order, something like co. Example. The
company domain name and project name are used together as the package name
for Android (the Bundle ID for iOS) when the app is released. If you think that
the app might be released, it’s better to specify the package name now. The
packagename can’t be changed once the app is released, so make the name
unique.

The above steps create a Flutter project directory called flutter_app that
contains a simple demo appthat uses Material Components.

11.Running the application:

Follow the below steps to run the flutter application that was structured above:

1: Locate the main Android Studio toolbar:

L iPhone XS Max <, Main.dart b L' m

Target Config Hot

Selector Selector il Etg Reload b

Run with Coverage

Step 2: In the target selector, select an Android device for running the app. If
none are listed as available, select Tools> Android > AVD Manager and create
one there. For details, see ManagingAVDs.

Step 3: Click the run icon in the toolbar or invoke the menu item
Run > Run.After the app build completes, you'll see the starter

app on your device.

13
E-Marketplace

https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

“THE ,t

BUILD rasaiMy, | oo
’CLU B par k
Creating a responsive E-marketplace mobile application with following
features for merchant and customer
Merchant Customer
Merchant login page Customer login page
Merchant home page Customer registration page
Merchant category list page Customer home page
Merchant category details page My profile page.
Merchant categories add page. Product display page
Merchant product list page Cart page
Merchant product details page Payment page
Merchant products add page. My order page.
Merchant products edit page. Order summary page
Merchant order received page

Import the Project

1) Open -Android Studio->select unzip emarketplace_app file->open

project.

(A QY

_document/E-MarketPlace_Testing Code/emarketplace_app |+

> Documents

> B Downloads

> i emarketplace_app

~ B2 emarketplace_document

v b E-MarketPlace_Testing Code

14
E-Marketplace

IIT™

H | t| N JINCUBATION
BUI/LD SELL
CLUuB researaczrﬁ]((

Inside lib Folder

v Olib
> I api
> @ components
> O Screens
> M@ shared preferences
‘& generated plugin_registrant.dart
‘& main.dart

> I linux
API: Inside api/api.dart it contains api call details all page

Components: All components (rounded button, text field container) are

available here. we can use all the above using the required class.

Shared preferences: In this dart file contain variable store the login details data.

Create Customer login Page.

Here Text field widget used for user input as email id and password. Flat Button

widget, to show action. Also, used Image to set logo for login page.
Inside lib/Screen/customer_login

v [0 customer_login

& background.dart

“® body.dart

‘& customer_detail_pojo.dart
‘& CustomerLogin_pojo.dart

‘& customer_login_screen.dart

15
E-Marketplace

IIT™

h INCUBATION

: tm
BU/LD
CLUB A= LA SN

Background. Dart: All page background class are available here

CustomerLogin_pojo.dart: There have a static method called from Json which
receives Map object. Then set mail id and password values from our Map object

called data. Now can use our function to convert our json to class.

customer_detail_pojo.dart: There have a static method called from Json which
receives Map object. Then we set name, emailid, password address and phone
number values from our Map object called data. Now use our function to convert

our json to class.

customer_login_screen.dart: It contain main function entry of my program
execution, and MyApp class which takes an object of Login class as a parameter

of the home property.
body.dart:

e Set Scaffold’s app Bar property as follows to make heading for our
application.

e For this U], all widgets are placed inside the Column widget, into the
Scaffold body. The first child of Column is the Container widget which
holds Image widget as it’s child.

o flutter-logo.png file copied into asset/images folder in this flutter
application and write into pubspec.yaml file to get it in our code.

e Then, for email id and password use the TextField widget from inside
component.RoundedmailLoginfield function for emailid and
Roundedpasswardfield password is an input widget that helps you to take
input from the user

e For the login button, use from component Roundedbutton ‘Login’ as a child
and onPressed() of this button we can write code for control navigation to

another home screen. After pressed login button all customer detail sends

16
E-Marketplace

BUI/LD | tmh INCE‘EE%\ON
CLUB researacrk)
to backend

// API Call from server //
String url = api.customerlogin;
// Write the following code Inside lib/Screen/customer_login/body.dart //

var res = await http.post(Uri.parse(url),

headers: {'Content-Type": ‘application/json’},

body: json.encode({'email": login.email, ‘password": login.password}));

// Connect both frond and end back server //

var data = json.decode(res.body);

// Status command from backend server //

var Response = data["Customerdetails"] as List;

// mapping with POJO code with customer detail //

customer_detail =

Response.map <Customer_detail>((json)=> Customer_detail.fromJson(json)).toList();

Response: When customer logins, api call occurs and a list appears which
contain customer details and in that all customer details are stored using shared

preference.
Stringvalue.email = sharedPreferences.getString("email”);

http.post: Request the specified url through POST method by posting the

supplied data and return the response as Future<Response>
http.get: is used to fetch the data from the Internet.

json.encode: The Encodable function is used to convert it to an object that must

be directly encodable.

json.decode: Is used to decode the JSON data into the Dart Map object. Once
JSON data is decoded, it will be converted into List<customerdetails> using

fromMap of the CustomerLogin class.

Flutter toast: Once get the response from backend “Login Successfully” add

17
E-Marketplace

IIT™

H | t| N INCUBATION
BUI/LD SELL
CLUuB researaczrﬁ]((

flutter toaster message.

Create Customer Registration Page

Here Text field widget used for user input as name, emailid, password and
phonenumber Flat Button widget, to show action. Also, used Image to set logo for

Registration page.
Inside lib/Screen/customer_signup

v [0 customer_siginup

& background.dart

‘™ body.dart

& Customersignup_Pojo.dart
‘™ or_divider.dart

“® social_icon.dart

“» customer_signup_screen.dart
background. Dart: All page background class are available here

Customersignup_Pojo.dart: There have a static method called from Json which
receives Map object. Then set name, emailid, password phone number and
address values from our Map object called data. Now use our function to convert

our json to class.
or_divider.dart: It contains divider line function
social_icon.dart: It contains the social icon function

customer_signup_screen.dart: It contains main function entry point of my
program execution, and MyApp class which takes an object of Login class as a

parameter of the home property.

18
E-Marketplace

IIT™

h INCUBATION

BUILD e T Ry
CLuB park

Body.dart:

e Set Scaffold’s appBar property as follows to make heading for our
application.

e For this U], all widgets are placed inside the Column widget, into the
Scaffold body. The first child of Column is the Container widget which
holds Image widget as it’s child.

o flutter-logo.png file copied into asset/images folder in this flutter
application and write into pubspec.yaml file to get it in our code.

e Then, for emailid and password use the TextField widget from inside
component.RoundedmailLoginfield for emailid, name, password and
phone number is an input widget that helps you to take input from the
user

e For the login button, use from component Roundedbutton ‘Signup’ as a
child and onPressed() of this button we can write code for control
navigation to another home screen. After pressed login button all
customer detail sends to backend

// API Call from server //
String url = api.customerregister;

http.post: Request the specified url through POST method by posting the

supplied data and return the response as Future<Response>
http.get: Is used to fetch the data from the Internet.

json.encode: The Encodable function is used to convert it to an object that must

be directly encodable.

Flutter toast: Once get the response from backend “Register Successfully” add

flutter toaster message.

19
E-Marketplace

H | t [NCILIJE/'\\AT\ON
BUI/LD m
CLUuB resel%racrﬁ]((

// Write the following code Inside lib/Screen/customer_signup/body.dart
//

var res = await http.post(Uri.parse(url),
headers: {'Content-Type": 'application/json’},
body: json.encode({
'‘name’: siginup.name,
‘email": siginup.email,
‘password": siginup.password,
‘phone’: siginup.phone,
)
// status command get from back end server //
if (res.body == "Registered Successfully”) {
Navigator.push(
context,
MaterialPageRoute(
builder: (context) => LoginScreen(),

)i

// flutter toast command //

Fluttertoast.showToast(
msg: "Registered Successfully”,
toastLength: Toast.LENGTH_SHORT,
gravity: ToastGravity.CENTER,
timelnSecForlosWeb: 2,
backgroundColor: Colors.black,
textColor: Colors.white);

} else {

Fluttertoast.showToast(
msg: "Invalid user”,
toastLength: Toast.LENGTH_SHORT,
gravity: ToastGravity.CENTER,
timelnSecForlosWeb: 2,
backgroundColor: Colors.black,
textColor: Colors.white);

Customer Home Page:

Inside lib/Screen/customer_home

20
E-Marketplace

IIT™

h INCUBATION

oIH 11tm

v [0 customer_home
& ApiServiceProjectDetail.dart
& CategoryDetail.dart
‘& home.dart
 profile.dart
® ProfileDetail_pojo.dart

‘@ ProfileDetailMatch_pojo.dart

CategoryDetail.dart: There have a static method called from Json which
receives Map object. Then set category name and category image values from our

Map object called data. Now use our function to convert our json to class.
home.dart:

Set Scaffold’s app Bar property as follows to make heading for our

application.
// API Call from server //
String url = api.category;

// Write the following code Inside lib/Screen/customer_home/home.dart

//

Future GetCategoryList() async {

var res = await http

.get(Uri.parse(url), headers: {'Content-Type": ‘application/json'});
print("category list success${res.body}");

if (res.body != null) {

var data = json.decode(res.body);

// List the category name image in this list //

var Response = data["Category"] as List;

//Map the category detail //

setState(() {

categorydetial =

Response.map <CategoryDetail>((json) => CategoryDetail.fromJson(json))
tolList();

)

21
E-Marketplace

, tm
BUILD
CLUB resedre

IIT™

INCUBATION
h CELL

ark

When category, api call occurs and a list appears which contain category details.

http.get: Is used to fetch the data from the Internet.

json.encode: The Encodable function is used to convert it to an object that must

be directly encodable.

json.decode: Is used to decode the JSON data into the Dart Map object. Once

JSON data is decoded, it will be converted into List<categorydetail> using from

Map of the Categorydetail class pojo code.

In Flutter, you can encode a local or network image (or another kind of

file) to a base64 string like this Ref link:

base64-string-and-vice-versa/

Drawer and list view My profile, My cart, My order, logout.

Display the Category image Base64 is an encoding scheme that can carry
data stored in binary formats. The application of base64 string is common

in web and mobile app development.

The Image. Memory constructor helps to display images from bytes.
Hence, we must convert the base64 string to bytes using dart convert and
display mage list view constructor. The standard List View constructor
works well for small lists. To work with lists that contain many items, it’s

best to use the ListView.builder constructor.

In contrast to the default List View constructor, which requires creating all
items at once, the ListView.builder() constructor creates items as they're

scrolled onto the screen.

22

E-Marketplace

https://www.kindacode.com/snippet/flutter-turn-an-image-into-a-base64-string-and-vice-versa/
https://www.kindacode.com/snippet/flutter-turn-an-image-into-a-base64-string-and-vice-versa/

CtUB

H HTM
BYD PRI, 1o
par

ark

Create My Profile Page:

ApiServiceProjectDetail.dart: It contains api detail update profile.

String get updateprofile

=>"http://121.242.232.216:7070/emarket/updateprofile”;

When customer logins, api call occurs and a list appears which contain customer

details using shared preferences.

profiledetailpojo.dart: There have a static method called from Json which
receives Map object. Then we set name, emailid, phonenumber and address
values from our Map object called data. Now use our function to convert our json

to class.

Flutter toast: Once get the response from backend server “Update Successfully”

add flutter toaster message.

/// Write the following code Inside

lib/Screen/customer_home/profile.dart //

Map data = {
"email": "${Stringvalue.email}",
"password": "${Stringvalue.password}"
L
final loginRequestJson = jsonEncode(data);
var res = await http.post(Uri.parse(url),
headers: {'Content-Type": 'application/json’}, body: loginRequestJson);
if (res.body != null) {
var data = json.decode(res.body);
// list of customer detial from server //
var Response = data["Customerdetails"] as List;
// map profile detail //
profiledetailmatch =
Response.map <ProfileDetailMatch>((json) => ProfileDetailMatch.fromJson(json))
tolist();

23
E-Marketplace

http://121.242.232.216:7070/emarket/updateprofile

IIT™

h INCUBATION

: tm
BU/LD
CLUB fes€arcia

// API Call from server //
String url = api.customerlogin;

json.decode: Is used to decode the JSON data into the Dart Map object. Once
JSON data is decoded, it will be converted into List<profiledetailmatch> using

from Map of the ProfileDetailMatch class pojo code.

profile.dart: Flutter User Profile Page Ul where you can access and edit your

user's information within your Flutter app Text field Controller

it’s useful to run a call back function every time the text in a text field change have

edit form where some data in text fields controller from database.

Here is my requirement, when I click the Update button, dynamically new cards

with nine Text Fields should be generated,

eg: name, emailid password, doorno, area, city, state and pincode. Once update all

value click update button all data send to backend using customer login api call

Create Product List and Add to Cart Page:

Inside lib/Screen/product_management

24
E-Marketplace

IIT™

h INCUBATION

BUILD e T Ry
CLuB park

v I product_management
® add_product.dart
& api_service.dart
‘& category_pojo.dart
 edit_product.dart
& main.dart
® product_detail.dart
& product_list.dart

‘& product_pojo.dart

We will be using SQLite and Shared Preferences in our application to store the
data locally on the device itself. SQLite and Shared Preferences store data, while

Provider manages the application’s state.

API CALL PRODUCT LIST

When products, api call occurs and a list appears which contain product details.
// API call product //

String url = api.product;

// Write the following code Inside

lib/Screen/product_management/product_list.dart //

List<Product_detail> product_detail;

bool isloading = false;

Future<dynamic> productdetailsfuture;

// function get all product list //

Future getallproductlist() async {

var res = await http.post(Uri.parse(url),
headers: {'Content-Type": ‘application/json’},
body: json.encode({'category': categoryname}));
if (res.body != null) {

var data = json.decode(res.body);

// get the product detail from database //
var Response = data["Productdetails"] as List;

75
E-Marketplace

IIT™

h INCUBATION

H It
BU/LD [y |
CLUB fes€arcia

product_detail =

Response.map <Product_detail>((json) => Product_detail.fromJson(json))
tolist();

print ("the product descr ${product_detail[0]
.productdetails

toString()}");

setState(() {

isloading = true;

i

}

}

http.post: Request the specified url through POST method by posting the

supplied data and return the response as Future<Response>

json.encode: The Encodable function is used to convert it to an object that must

be directly encodable.

json.decode: Is used to decode the JSON data into the Dart Map object. Once
JSON data is decoded, it will be converted into List<product_detail> using from

Map of the product_detail class.

1. Build shopping cart:

The first is a product screen, which displays a list of products along with photos,
the name of the product, and the price. Each list item includes a button. that
allows you to add it to your shopping basket. The AppBar includes a shopping
cart icon with a badge that updates the item count whenever a user presses the
Add to Cart button. The second screen, the shopping cart screen, displays a list of
the things that the user added to it. If the user decides to remove it from the cart,
a delete button removes the item from the cart screen. The entire cost is shown at
the bottom of the screen. A button that, for the time being, displays a Snack Bar

confirming that the payment has been processed.

2. SETUP:

26
E-Marketplace

IIT™

h INCUBATION

: tm
BU/LD
CLUB fes€arcia

Next, we are going to start off with creating our model classes named Cart and
Item. So, create a new Dart file and name it cart_model, or you can also name it

per your requirements Ref (Cartmodel.dart)

Create another Dart file and enter product_pojo (Ref:product_pojo.dart)

3. Add Sqflite:

As previously stated, we will be utilizing SQFlite, which is essentially SQLite for
Flutter, and we will save the data locally within the phone memory. We are not
uploading or retrieving data from the cloud because the objective of this post is to
learn the fundamental operation of a cart screen. So, using the SQLite package,

we’re constructing a database class called DB Helper (Ref:DBHelper.dart)
4. Add the Provider Class:

The next step will be to develop our Provider class, which will include all our
methods and will separate our Ul from the logic that will eventually manage our
entire application. We use Shared Preferences in addition to SQLite. The reason
for using Shared Preferences is because it wraps platform-specific persistence to
store simple data such as the item count and total price, so that even if the user
exits the application and returns to it, that information will still be available. (Ref

cart_provider.dart)

5. Create a basic Shopping cart Ul:

So, starting from the top that is the AppBar, we have added an Icon Button
wrapped with our Badge package that we added to our application. The Icon is of
a shopping cart and the badge over it shows how many items have been added to
our cart. Please have a look at the image and code below. We have wrapped the

Text widget with a Consumer widget because every time a user clicks on the Add

27
E-Marketplace

IIT™

h INCUBATION

: tm
BU/LD
CLUB fes€arcia

to Cart button, the whole Ul does not need to get rebuilt when the Text widget

must update the item count. And the Consumer widget does exactly that for us

The Scaffold ‘s body is a List View builder that returns a Card widget with the
information from the lists we created, the name of the product, unit, and price

per unit, and a button to add that item to the cart.

We have initialized our Cart Provider class and created a function that will save
data to the database when the Add to Cart button is clicked. It also updates the
Text widget badge in the AppBar and add total price to the Database that will

eventually show up in the Cart screen.

6. Create Cart Screen:

Moving on to the cart screen, the layout is like the product list screen. When the
user clicks the Add to Cart button, the entire information is carried onto the cart
screen. The implementation is like what we've seen with other ecommerce
applications. The primary distinction between the two layouts is that the cart
screen includes an increment and decrement button for increasing and
decreasing the quantity of the item. When users click the plus sign, the quantity
increases, and when they click the minus sign, the quantity decreases. The total
price of the cart is added or subtracted when the plus and minus buttons are
pressed. The delete button deletes the item from the cart list and subtracts the
price from the total price. Again, we have wrapped our ListView builder with the
Consumer widget because only parts of the Ul need to be rebuilt and updated, not

the whole page. (Ref:cartscreen.dart)

Look towards the end of the code, just before the bottom navigation bar, for a
Consumer widget that returns Value Notifier Builder from within the Column

widget. It is responsible for updating the quantity for the specific item when the

28
E-Marketplace

IIT™

b | t| N INCUBATION
BUI/LD SELL
CLUuB resel%racrﬁ\((

user clicks either the plus or minus button on the cart screen. There is a bottom

navigation bar with a button at the bottom of the screen.

After Pressed the Continue button its navigator to Order summary page

Create Order Summary Page:
Inside lib/Screen/order_summary

v [0 order_summary
‘& order_summary.dart

‘@ order_summary_pojo.dart

order_summary_pojo.dart: There have a static method called from Json which
receives Map object. Then set customer detail order date and time order id and
product details values from our Map object called data. Now use our function to

convert our json to class.
order_summary.dart:

e Previously, store the customer detail id each customer (name emailid
phone number, address) data by using Shared Preferences is the way in
which one can store and retrieve small amounts of primitive data as

key/value pairs to a file on the device storage.
e Display the store all shared preferences top corner of the page.

e Now create a new class named as OrderSummaryScreen() this will be
going to be a stateful class because our application does change its state at

run time. And return MaterialApp().

29
E-Marketplace

IIT™

i | t| N JINCUBATION
BUI/LD SELL
CLUuB rese%racrﬁ]((

e The Map object is a simple key/value pair. Keys and values in a map may be

of any type. Map data list each element.

e jsonencode: The Encodable function is used to convert it to an object that

must be directly encodable.
// MAP DATA//

Map mapData;

list.forEach((element)

{

mapData = {

"productid": element.productld,
"productname": element.productName,
"productquantity”: element.initialquantity,
"productprice": element.productPrice,
"productimage": element.image,
"productdetail” : element.productDetails,
2

Is.add(json.encode(mapData));}

// API call for order summary //

String get order summary =>

"http://121.242.232.216:7070/emarket/ordersummary”
» Send all detail to order summary api call to backend server using json format

// Write the following code Inside

lib/Screen/order_summary/order_summary.dart //

var request = json.encode([{"productlist":json.decode("${Is}"),"totalprice":

"${total}",

"customerid":"${Stringvalue.id}","customername": "${Stringvalue.name}","customeremail":
"${Stringvalue.email}",

"customerphoneno": "${Stringvalue.mobilenumber}",

"customeraddressno": "${Stringvalue.addressno}",

30
E-Marketplace

IIT™

H | t| N INCUBATION
BUI/LD SELL
CLUuB researaczrﬁ]((

"customerarea": "${Stringvalue.area}",
"customercity": "${Stringvalue.city}",
"customerstate": "${Stringvalue.state}",
"customerpincode": "${Stringvalue.pincode}"

)i/ mapping

var res = await http.post(Uri.parse(ordersummary),
headers: {'Content-Type': ‘application/json’},

body: request);

e Once Get the response “Inserted Successfully”.

e Flutter toast: Once get the response from backend “Order Successfully

“add flutter toaster message.
e Follow the same procedure Cart screen page.

e Total price value passed through payment function (Ref: payment.dart)
We can use Navigator. push () to navigate to a new route and Navigator.

pop () to navigate to the previous route.

o After Getting response from backend server customer get invoice mail to

customer email id.

Create Order Management Page:

Inside lib/Screen/order_management

~ B order_management

‘& order_mangament.dart
S

4

orderlist_pojo.dart

//API CALL FOR ORDER PAGE //
String url = api.merchantorder;
orderlist_pojo.dart: There have a static method called from Json which receives

31
E-Marketplace

IIT™

H | t| N INCUBATION
BUI/LD SELL
CLUuB researaczrﬁ]((

Map object.

Then set orderdetail customer detail and product detail values from our Map

object called data. Now we can use our function to convert our json to class.

// Write the following code Inside

lib/Screen/order_management/order_management.dart //

var res = await http.post(Uri.parse(url),
headers: {Content-Type': ‘application/json’});
if (res.body != null) {

var data = json.decode(res.body);

// get the orderdetail from backendd side //
var Response = data["orderdetails"] as List;

setState((){
merchantorder_detail =
Response.map <Merchantorder_detail>((json) => Merchantorder_detail.fromJson(json)).toList();}

)}
json.decode: Is used to decode the JSON data into the Dart Map object. Once
JSON data is decoded, it will be converted into List<merchantorder_detail> using

from Map of the Merchantorder_detail class pojo code.

Create Merchant Login Page:

Inside lib/Screen/merchant_login

v " merchant_login

& background.dart
™ body.dart
‘& MerchantLogin_pojo.dart

‘& merchant_login_screen.dart

Follow up same procedure as Customer Login Page

32
E-Marketplace

BUI/LD | tmh INC!-BL%A[\ON
CLUB resea rcrk >
body.dart:

// API Call from server //
String url = api.merchantlogin;
// Write the following code Inside lib/Screen/merchant_login/body.dart //

Future GetMerchantLoginDetail() async {
var res = await http.post(Uri.parse(url),

// json mapping //

headers: {'Content-Type': ‘application/json’},
body: json.encode({'email': merchantlogindetail.email, ‘password":
merchantlogindetail.passwordy}));

// status command for backend server merchant login page //
if (res.body == "Successfull") {
Navigator.push(

context,

MaterialPageRoute(

builder: (context) => MerchantScreen),

);

// flutter toast command //
Fluttertoast.showToast(

msg: "Login Successfully”,

toastLength: Toast.LENGTH_SHORT,

gravity: ToastGravity.CENTER,
timelnSecForlosWeb: 2,

backgroundColor: Colors.black,

textColor: Colors.white);

}else {

Fluttertoast.showToast(

msg: "Invalid user”,

toastLength: Toast.LENGTH_SHORT,

gravity: ToastGravity.CENTER,
timelnSecForlosWeb: 2,

backgroundColor: Colors.black,

textColor: Colors.white); }}

Create Category Management:

Inside lib/Screen/category_management

33
E-Marketplace

IIT™

h INCUBATION

: tm
BU/LD
CLUB fes€arcia

v [Screens
v [% category management
“» add_category.dart
‘™ api_service.dart
& category detail.dart
‘™ category_list.dart
‘™ category_pojo.dart

& main.dart
add_category: Newly add category name and image send to through
insertcategory api call to backend.
api_service.dart: It contains api detail category.

String get insertcategory =>

"http://121.242.232.216:7070/emarket/insertcategory”;

String get deletecategory =>
"http://121.242.232.216:7070/emarket/deletecategory";

String get category => "http://121.242.232.216:7070/emarket/category”;
category_detail.dart: Displays category details
category_list.dart: Displays List of category name

category_pojo.dart: There is a static method called from Json which receives
Map object. Then set category name and image values from our Map object called

data. Now use our function to convert our json to class.

main.dart: The main file of the generated project is the entry point of the Flutter
application: void main () =>runApp(MyApp()); The main function by itself is the

Dart entry point of an application.

34
E-Marketplace

U!LD Itmh INCE‘EE%\ON
CLUB researacrk >

As we mention in the first paragraph, we will use the HTTP library package to
access the REST full API from the REST API server. For that, install this package
by open and edit pubspec.yaml then add this dependency.

category_pojo.dart: That represent the SQLite table. This class is about category

detail.

api_service.dart Where we will put all CRUD (POST, GET, PUT, DELETE)
methods to the REST API. Fill this class with this CRUD operation of HTTP
requests to the REST API.

// Write the following code Inside

lib/Screen/category_management/api_service.dart //

List<dynamic> categorydetail = [];

var res = await http.get(Uri.parse(category));
if (res.body != null) {

var data = json.decode(res.body);

if (res.statusCode == 200) {

var Response = data["Category"] as List;
categorydetail=Response.map((item)=> CategoryDetail.fromJson(item)).toList();
}else {

throw "Failed to load cases list1";

}

}

return categorydetail;

http.get: Is used to fetch the data from the Internet.

Response: When product, api call occurs and a list appears which contain

productdetail

json.decode: Is used to decode the JSON data into the Dart Map object. Once
JSON data is decoded, it will be converted into List<categorydetail> using from

Map of the Categorydetail class pojo code.

35
E-Marketplace

BU/LD I tmh INC!‘-BL/'L\IIPON
CLUB researacrk)

// Write the following code Inside

lib/Screen/categorymanagement/api_service.dart //

Update Category

Map data = {

'‘name": updatecategory.name,

|3

final Response response = await http.put(
Uri.parse('$insertcategory/$id"),

headers: <String, String>{

‘Content-Type": 'application/json; charset=UTF-8',

L

);

ody: jsonEncode(data),

1.CATEGORY LIST:

We will display the list of data in a separate Dart file that will call from the
main. Dart home page body. For that, we need a dart file to view the list of

data. (Ref:category_list.dart)

Class name that extends Stateless Widget object. Inside that class, declare
these variables that hold Category list that loaded from the main. Dart and
create Key for the list. Add an override method after the variables to build
the ListView widget for the list of categories. That List View builder
contains the Card that has the child of InkWell that use to navigate to the
Detail Widget using MaterialPageRoute. The child of the Card is ListTile
that contains an Icon (leading), Text (title), and Text(subtitle).

The Inkwell widget has an on-Tap event with an action to Navigate to the
details page. Container, Column, Image, and Text have their own

properties to adjust the style or layout.

36

E-Marketplace

H It
BUILD I
CLUB resedre

IIT™

INCUBATION
h CELL

ark

Keep in mind, every widget that uses the child only has one widget as its
child. If you need to put more than one widget to the parent widget, use

children: <Widget> property.

Next, open and main.dart then replace all Dart codes with these lines of
codes to display the List View in the main home page. We use the existing
floating button as the add-data button with an action to go to Add Category
Widget.dart.

2.Category Detail:

We will display data details to another page that opened when tapping on a list

item in the list page. For that, create a Dart file in the lib folder detail

category.dart. We will use a scrollable Card widget to display a detail to prevent

overflow if the Card content is longer. Next, open and edit lib/detailwidget.dart

then add these imports of Flutter material, database helper, editdatawidget, and

cases object model.

Add a Detail Widget class that extends Stateful Widget. This class has a
constructor with an object field, a field of Category object and

_DetailWidgetState that builds the view for data detail.

Add a _DetailWidgetState class that implementing all required widgets to

display data details.

To handle the delete button, we need to add a method or function after the

above method that shows an alert dialog to confirm if data will be deleted.

// Write the following code

Inside lib/Screen/categorymanagement/category_detail.dart //

37

E-Marketplace

IIT™

H | t INCUBATION
BUILD AU
B resea rcrfl1(‘

return showDialog<void>(
context: context,
barrierDismissible: false, // user must tap button!
builder: (BuildContext context) {
return AlertDialog(

title: Text('Warning!"),

content: SingleChildScrollView(
child: ListBody(

children: <Widget>[

Text('Are you sure want delete this item?"),
1,

),

),

actions: <Widget>|
ElevatedButton(

child: Text('Yes'),

onPressed: () {
api.deleteCategory(categoryid);
Navigator.push(

context,

MaterialPageRoute(

builder: (context) {

return CategoryMainPage();

2

).)i}

),

ElevatedButton(

child: const Text('No'"),
onPressed: () {

Navigator.push(

context,

MaterialPageRoute(

builder: (context) {

return CategoryMainPage();

1,

))i 1))

Create Product Management:

Inside lib/Screen/product_management

38
E-Marketplace

IIT™

h INCUBATION

: tm
BU/LD
CLUB fes€arcia

v I product_management
® add_product.dart
& api_service.dart
‘& category_pojo.dart
 edit_product.dart
& main.dart
® product_detail.dart
& product_list.dart

® product_pojo.dart

add_Product: Newly add product name, description, price, category, quantity,

and image send to through insert product api call to back end.
api_service.dart: It contains api detail insert delete product.

String get insertproduct =>
"http://121.242.232.216:7070/emarket/insertproduct”;
String get updateproduct =>
"http://121.242.232.216:7070/emarket/updateproduct”;
String get deleteproduct =>
"http://121.242.232.216:7070/emarket/deleteproduct”;
String get listproduct =>
"http://121.242.232.216:7070/emarket/listproduct”;
product_detail.dart: It display product details

product_list.dart: It display List of product details are product name, price,

category, description, quantity and image

category_pojo.dart: There is a static method called from Json which receives
Map object. Then set category name and image values from our Map object called

data. Now use our function to convert our json to class.

39
E-Marketplace

IIT™

H | t| N INCUBATION
BUI/LD SELL
CLUuB researacrfl1((

main.dart:The main file of the generated project is the entry point of the Flutter
application: void main() => runApp(MyApp()); The main function by itself is the

Dart entry point of an application.

As we mention in the first paragraph, we will use the HTTP library package to
access the REST full API from the REST API server. For that, install this package
by open and edit pubspec.yaml then add this dependency.

category_pojo.dart: That represent the SQLite table. This class is about category

detail.

api_service.dart where we will put all CRUD (POST, GET, PUT, DELETE)
methods to the REST API. Fill this class with this CRUD operation of HTTP
requests to the REST API.

// Write the following code Inside

lib/Screen/product_management/api_service.dart //

List<dynamic> product = [J;

var res = await http.get(Uri.parse(listproduct));
if (res.body != null) {

var data = json.decode(res.body);

if (res.statusCode == 200) {

var Response = data["Product"] as List;
product = Response.map((item) => Productdetails.fromJson(item)).toList();
}else {

throw "Failed to load cases list1";

}

}

return product;

http.get: Is used to fetch the data from the Internet.

Response: Once fetch category api get data product list.it contain each product

name, price, category, description, quantity, and image

40
E-Marketplace

BUI/LD | tmh INCP‘-BL%\ON
CLUB resead I’Crk g

json.decode is used to decode the JSON data into the Dart Map object. Once JSON
data is decoded, it will be converted into List<product> using from Map of the
Productdetail class pojo code. After getting the Product List it has product name,

price, category, decription, quantity and image.

// Write the following code Inside

lib/Screen/product_management/api_service.dart //

Map data = {

'id":id,

‘name": updateproducts.name,

‘category': updateproducts.category,
‘description': updateproducts.description,
'price': updateproducts.price,

‘quantity’: updateproducts.quantity,

2
final Response response = await http.post(
Uri.parse(updateproduct),

headers: <String, String>{

‘Content-Type': ‘application/json; charset=UTF-8',
2

body: jsonEncode(data),

);

if (response.statusCode == 200) {
Fluttertoast.showToast(

msg: "Product Update Succesfully",
toastLength: Toast.LENGTH_SHORT,
gravity: ToastGravity.CENTER,
timelnSecForlosWeb: 2,
backgroundColor: Colors.black,
textColor: Colors.white);

}else {

Fluttertoast.showToast(

msg: "Product Update Faliure",
toastLength: Toast.LENGTH_SHORT,
gravity: ToastGravity.CENTER,
timelnSecForlosWeb: 2,
backgroundColor: Colors.black,
textColor: Colors.white);

}

41
E-Marketplace

IIT™

H | t| N INCUBATION
BUI/LD SELL
CLUuB researacrfl1((

1. PRODUCT LIST:

e We will display the list of data in a separate Dart file that will call from the
main.dart home page body. For that, we need a dart file to view the list of

data. (Ref:product_list.dart)

e (lass name that extends Stateless Widget object. Side that class, declare
these variables that hold Product list that loaded from the main. Dart and
create Key for the list. Add an override method after the variables to build
the List View widget for the list of categories. That ListView builder
contains the Card that has the child of Inkwell that use to navigate to the
Detail Widget using MaterialPageRoute. The child of the Card is List Tile

that contains an Icon (leading), Text (title), and Text(subtitle).

e The Inkwell widget has an on-Tap event with an action to Navigate to the
details page. Container, Column, Image, and Text have their own

properties to adjust the style or layout.

e Keep in mind, every widget that uses the child only has one widget as its
child. If you need to put more than one widget to the parent widget, use

children: <Widget> property.

e Next, open and edit lib/main.dart then replace all Dart codes with these
lines of codes to display the ListView in the main home page. We use the
existing floating button as the add-data button with an action to go to

AddCategoryWidget.dart.

2. Product Detail:

We will display data details to another page that opened when tapping on a list

42
E-Marketplace

BUI/LD | tmh INCP‘-BL%\ON
CLUB researacrk g

item in the list page. For that, create a Dart file in the lib folder detail product
Dart. We will use a scrollable Card widget to display a detail to prevent overflow
if the Card content is longer. Next, open and edit detailwidget.dart then add
these imports of Flutter material, database helper, editdatawidget, and cases

object model.

e Add a Detail Widget class that extends Stateful Widget. This class has a
constructor with an object field, a field of Product object and

_DetailWidgetState that builds the view for data detail.

Add a _DetailWidgetState class that implementing all required widgets to display

data details.

e To handle the delete button, we need to add a method or function after the

above method that shows an alert dialog to confirm if data will be deleted.

// Write the following code Inside
lib/Screen/product_management/product_detail.dart //

return showDialog<void>(

context: context,

barrierDismissible: false, // user must tap button!
builder: (BuildContext context) {

return AlertDialog(

title: Text('Warning!"),

content: SingleChildScrollView(

child: ListBody(

children: <Widget>[

Text('Are you sure want delete this item?"),
1,

),

),

actions: <Widget>|

ElevatedButton(

child: Text('Yes'),

onPressed: () {

api.deleteProducts(id);

Navigator.push(

43
E-Marketplace

U!LD Itmh INCE‘EE%\ON
CLUB researacrk >

context,

MaterialPageRoute(

builder: (context) {

return MyApp_edit_product();

2
),
)i
2
),
ElevatedButton(

child: const Text('No"),
onPressed: () {
Navigator.push(
context,
MaterialPageRoute(

builder: (context) {
return MyApp_edit_product(); },),); }).1,)i });

3. Edit Product Detail

That codes build widgets combination of Container, Card, Column, Image, Text,
and Raised Button. The Raised Buttons has on Pressed event that action to
navigate to the EditDataWidget and trigger delete confirm dialog. Next, before
the closing of _DetailWidgetState class body add this method or function to
navigate to the EditDataWidget with cases object params. The layout for edit data
is the same as the add data view with additional object params that get from the
details page. This object will fill the default value of the TextFormField and
Submit Button. On the submit it will update the data based on the ID then
redirect to the list view. First, create a new dart file in the lib folder
lib/editdatawidget.dart. Open and edit that file then add these lines of the dart
codes to build the edit form and function to submit this form to the REST API.

44
E-Marketplace

BU/LD I tmh INC!‘-BrE/t\Il[\ON
CLUB researacrk)

CREATE MY ORDER PAGE:

Inside lib/Screen/myorder

v [0 myorder
& my_order.dart

‘& my_order_pojo.dart

//API CALL FOR ORDER PAGE //
String url = api.customerorder;

my_order_pojo.dart: There have a static method called from Json which receives
Map object. Then set order detail customer detail and product detail values from

our Map object called data. Now use our function to convert our json to class.

// Write the following code Inside lib/Screen/myorder/my_order.dart //

Map data = {

"customerid": "${Stringvalue.id}",
L
// json script //

final loginRequestJson = jsonEncode(data);

var res = await http.post(Uri.parse(url),

headers: {Content-Type': ‘application/json’}, body: loginRequestJson);
if (res.body != null) {

var data = json.decode(res.body);

// list of customer order detail in server //

var Response = data["orderdetails"] as List;

setState((){

customerorder_detail =

Response.map <Customerorder_detail>((json) => Customerorder_detail.fromJson(json))
tolist();

i

45
E-Marketplace

IIT™

h INCUBATION

H It
BU/LD [y |
CLUB fes€arcia

Map data with each customer id

json.decode: Is used to decode the JSON data into the Dart Map object. Once
JSON data is decoded, it will be converted into List<customerorder_detail> using

from Map of the CustomerOrder class pojo code.

my_order.dart: Just display Customer detail and Product detail

(Ref:productlist.dart)

PAYMENT GATEWAY INTEGRATION:

Inside lib/Screen/payment

& payment.dart

1. Razorpay Payment:

Razor pay Payments provide a range of products to accept

payments and make payouts.

2.Create a Razor pay account and log in to the dashboard:

You must sign up for a Razor pay account to use the Razorpay

Payments products and access the Razor pay Dashboard.

Sign Up

To create a Razorpay Account, go to the Razorpay website and

click Get Started.

Follow these steps for a smooth sign-up process:

46
E-Marketplace

https://easy.razorpay.com/

IIT™
INCUBATION
h CELL

H It
BUILD I
CLUB resedrey

1. Contact Details
2. Platform Details
3. Business Type and PAN Details

4. Communication Details

Contact Details
Provide your contact details to get started.
1. Enter your 10-digit Mobile Number.

2. Select the check box below to receive updates on WhatsApp.
Click Send OTP.

dRazorpay

Contact Details —

What'’s your mobile number?

+91

Get updates on WhatsApp ®

Send OTP

3. Enter the OTP sent to your mobile number. If you did not receive

the OTP, click Resend OTP.

4. Click Submit OTP.

47
E-Marketplace

BU'}'ED "t' 1
researc
,CLUB Park

™
INCUBATION
h CELL

dlRazorpay
< Contact Details —
Enter the OTP sent to +91
5466

Resend OTP

Terms and Conditions,
Privacy Policy, and Service Agreement

Submit OTP

et e Py S S
5.Enter your Name and click Continue.
dRazorpay
& Contact Details —
What's your name?
[Gaurav Kumar
© 2017-2022 - Met

Terms of use - Priv

48
E-Marketplace

IIT™

H | t INCUBATION
BUILD I
B resea rcrfl1(¢

Platform Details
Tell us more about where you want to accept payments.

1.Select where you want to accept payments from the given

options. You can also select multiple options if relevant.

2.In case you select Others as an option, add a description.

Click Continue.

dRazorpay

< Platform Details —

Where do you want to accept
payments?

Website

[Android app

D iOS app

D Social Media (WhatsApp, Facebook, Instagram)
[0 offline store

[J Others

3.If you select Website/App, add your website/app link and

click Continue or click Add Later to add the details afterwards.

49
E-Marketplace

IIT™

‘TH

| tm INCUBATION
BUILD
B resea rcrfl1(¢

dRazorpay

< Website Details S—

Add your website link

This is the website where you would like to accept payments

https:/ acmecorp.com

e

17-2022 hant agreer
Terms of use - Privacy policy - Support

Business Type and PAN Details

Provide the following business and PAN details:

1.Select your business type from the list. Know more about

different business types.

2.Click Continue.

50
E-Marketplace

https://razorpay.com/docs/payments/easy-create-account#business-type-and-pan-details
https://razorpay.com/docs/payments/easy-create-account#business-type-and-pan-details

CELL

.THE IIT™
| tl N JINCUBATION
BUILD research

CLuB park

dRazorpay

< Business Type -—

What's your business type?

Pick only one that applies to your business

NOT REGISTERED ®@

(UCIVIGIEIN Small business

REGISTERED ®

Proprietorship Partnership | LLP | Private limited

Public limited Trust Society NGO HUF

© 2017-2022 - Mercl

3.Enter your PAN /Business PAN and click Continue. We will
verify the details with the Central PAN database.

dRazorpay

< PAN Details _—

What's your PAN number?

We require this to verify your identity

© 2017-2022 - Mer
Terms of use - Priva

4.Confirm the name associated with the PAN by clicking Yes,
Confirm. To edit the PAN details, click Edit PAN.

51
E-Marketplace

CELL

“THE ’ -
| tl N JINCUBATION
BU!LD rese?)rach

dRazorpay

< PAN Details -—

Confirm your name is
“Gaurav Kumar”

We've verified the name using your PAN number. You cannot
make any changes to your PAN details after you confirm.

© 2017-2022 - Merchant a
Terms of use - Privacy pe

5.Enter your Brand Name. This should be the name of your

business that your customers recognise. Click Continue.

dRazorpay

< Business Details -—

What's your brand name?

This is the business name that your customers recognize

Burger Singh ‘

© 2017-2022 - Mer
Terms of use

6.Select the relevant Business Category from the list. For
example, retail store, online store/marketplace, government
and so on.

52

E-Marketplace

*H HTM
BYD PRI, 1o

dlRazorpay
< Business Category —

What category does your business fall
under?

Retail store Government
Artist / Designer / Blogger Service provider

Financial services Restaurant / Bar / Wine store / Home chef
Utilities / Bill payment Travel and transport ~ Social
Education Charity / NGO Teh services / Freelancer

Tech products Others

© 2017-2022 - Merchant agreement

erms of use - Privacy policy - Support

7.Choose a Subcategory from the list. For example, if you
selected Online store/Marketplace then specify the category
under it from the list.

dRazorpay

< Business Category —-—

What specific category under “Online
store / Marketplace” ?

m Fashion and Lifestyle Grocery

Ad / Coupons / Deal services Gaming

General merchandise stores Others

8.Specify the category under the subcategory selected in the
previous step. In case you selected Ecommerce, then specify
the category under it from the list.

53

E-Marketplace

CtUB

.TH ™
BUI/LD reSégmh INCUBATON
d

dRazorpay

< Business Category =

What specific category under
“Ecommerce” ?

Agricultural products Books and publications
Books and publications Flowers and gifts
Electronics and furniture Product rentals
Babycareandtoys Office supplies ~ Wholesale Sports
Pet care Religious products Dropshipping
Computers and accessories Supplies
Pre-owned automobiles Precious metals
Watches and Jewellery Education Home furnishing

Others

© 2017-2022 - Merchant agreement -
Terms of use - Privacy policy - Support

9.Describe your business in at least 50 characters.
Click Continue.

dRazorpay

< Business Category —

Describe your business

Tell us a few details about your products, customers, where
you sell, and how you sell.

Termsand Conditions

©2017-2022 - Mer
Terms of use - Privacy policy -

54
E-Marketplace

IIT™

‘TH m

i | t INCUBATION
BUILD
B resea rcrfl1(‘

3.Test Mode

Once your account is created, you have access to the Test mode
on the Dashboard. Test mode is used for testing purposes and
does not involve actual money transactions. However, you

would need to activate your accountin order to accept live

paym ents.
YOU'RE IN TEST MODE
= « Test Mode - 5_‘
Test Mode

Payments Refunds Batch Refunds Orders Disputes
® Live Mode

You are in Test Mode, so only test data is shown. Activate your account to start making live transactions.

Payment Id Duration Status

™ Past7Days 03Mar 2022 to 10Mar 2022 All v
Email Notes Count
4.AP1 Keys

API key is a combination of the key_id and key_secret and is
required to make any API request to Razorpay. You also have
to implement the API keyin your code as part of your

integration process.

5.Generate API Keys

e Log into your Dashboard with appropriate credentials.

e Select the Test mode for which you want to generate the APIkey.

e Test Mode: The test mode is a simulation mode that you
can use to test your integration flow. Your customers will

not be able to make payments inthis mode.

55
E-Marketplace

Je

IIT™

‘TH

| tm INCUBATION
BUILD
B resea rcrfl1(¢

e Navigate to Settings — API Keys — Generate Key to generate key
for theselected mode.
Once generated, you will be able to see the Key Id, the date
the key wascreated and the expiry date for the API Key on

screen.

Configuration Webhooks APl Keys Reminders

You are in Test Mode, so only test data is shown. Activate your account to start making live transactions.

Hello, Developer! Would you like to take a few seconds to help us improve your experience with Razorpay? @
Your Feedback Matters :

Click here
Key Id Created At Expiry Action
rzp_test_vLqPyNVpDelzJg Feb 18th, 2022 12:26:43 PM Never

// Write the following code Inside lib/Screen/payment/payment.dart //

var options = {
"key": "rzp_test_4B5CoaTyxFQh3I", // generate key from razorpay website //
"amount": payment_price * 100, // payment price value get from order summary page //

"name": "INdigrain”,

"description": "payment for the product”,

"prefill": {"contact": "${Stringvalue.mobilenumber}", "email": "${Stringvalue.email}"},
7
try {

razorpay.open(options);
} catch (e) {

print(e.toString());

}
Replace generated key from Razorpay.
Key: < your key >
example: rzp_test_vLqPyNVpDelLz]g
Pass the Checkout options. Ensure that you pass the order_id that you received

in the response to the previous step.

56
E-Marketplace

| tm INC&E%\ON
research \ ¢
pa

CLUB

Running the application

After Completed all the code and Run the Main.dart File

Activities @ jetbrains-studio ¥ Mar3 12:13

emarketplace_app - my_order_pojo.dart [emarketplace_app]

File Edit View Navigate Code Refactor Build Run Tools VCS Window Help

b > lib> Screens > myorder [REDMINOTE9PROMAX (MOBILE) ~ « MAIN.DART ~ -3) P [
" i ® _
8 Guzl==s © “& my_order_pojo.dart <
g -
£ >Wios E
5 class Productlist { 52 o
v Olib String productname; é
~ [api String productprice; =
5 } . H
Ew g @ api.dart String productquantity;
g String preductimage;
= > [components iy
= =
3 ~ DO screens Productlist(g
% > I category_management {this.productname, this.productguantity, this.productprice, this.productimagel); E
.. I
g
> [customer_home 3
~ factory Productlist.fromJson(Map<String, dynamic> json) { =
% » [customer_login return Productlist(B
g . . _
& Run: main.dart gﬁ
)
. Console 2
i
P Launching lib/main.dart on Redmi Note 9 Pro Max in debug mode... §
b Running Gradle task 'assembleDebug’. a2
O 3 v Built build/app/outputs/flutter-apk/app-debug.apk. -
i Installing build/app/outputs/flutter-apk/app-debug.apk. .. ‘
g
HE
5 2
k. 3
= =3
E <
=
-
o
9:Version Control @ TODO @ 6:Problems @ Terminal ¢ Dart Analysis = Logcat &Run 7 Profiler & AppInspection QEventlog & Layout Inspector
L # Runselected configuration LF UTF-8 2spaces WV B ntelli] Light

Install App in Mobile

Install via USB

INdigrain

Remember my chaice

T

57
E-Marketplace

FINAL OUTPUT:

CUSTOMER LOGIN

E-Marketplace

CUSTOMER HOME:

| tm INCUEXITION
research \ ¢
park
CUSTOMER REGISTRATION
INdigrai®

58

H
BU/LD
.CLUB

PROFILE

< My Profile

[Name
Monica Dhamodharan ‘

Email id
monidhamoshanthi@gmail.corr

123456

Password ‘

 Phone No
9003135888 \

Doorno/Flatno ‘

129/99

Street name
Perambur High Road]

~city
Perambur Chennai ‘

-~ State
Tamilnadu ‘

- [O] <

CART SCREEN

(& My Cart

millet biscuits]

%100
Qe

Tolprice 100.0 | conme

] @ <

E-Marketplace

tm
rese% rch

PRODUCT LIST

<« Product List (]

millet biscuits

e 2100
= ﬂ millet biscuits
=

ORDERSUMMARY

ark

Add to cart

IT™
INCUBATION
CELL

& Order Summary

Deliver to:

Monica Dhamodharan
monidhamoshanthi@gmail.com
129/99, Perambur Chennai, Tamilnadu
600011

9003135888

millet biscuits

@g 2100

.

Total Price 100.0 _

L] @® <

59

H
BU/LD
.CLUB

Order Details

Orderid:1
Order Date & Time:01 March 2023 19:06:32 IST
Name:Monica

Email id:monidhamoshanthi@gmail.com

Phone No:9092734764

Address:129/99,perambur high road ,chennai,
Tamilnadu

PinCode:600011
Total Price:500.0

Product Details

Product Name:Multi grain millet mix Product Name:

Price ¥:200 Price ¥:200
Product Quantity: 1 Product Quanti
] @ <4

E-Marketplace

IT™
INCUBATION
CELL

tm
research
park

ORDERMANAGEMENT

9:22PM | 0.2K8/s T © @

= Category Management
2] Product Management

9 Logout

MERCHANT LOGIN

P
INdigrai®

MERGHANT LOGIN

Email Id

@ Password =

D) Remembier Me

or
Cuslomer Login

F

L @ «

60

H
BU/LD
.CLUB

CATEGORY LIST

< Category List

[] millet

PRODUCTLIST

< Product List

B8 millet biscuits

E-Marketplace

tm
research
park

IT™
INCUBATION
CELL

CATEGORY DETAIL

< Category Details

ry Name:
millet

PRODUCTDETAILS

< Product Details

Product Name:
millet biscuits

Product Category:
millet
Product Details:
millet biscuits

Product Price:
100

Product Quantity:
10

=

Delete

61

H Htm, (™.
BU!LD resea rch CELL
,CLUB park

EDIT PRODUCT MYORDER

< Edit Product

Product Name

millet biscuits

Product Category

Order Details

millet Orderid:11
Order Date & Time:25 January 2023 10:42:37 IST
Product Description Name:Monica Dhamodharan
millet biscuits Email id:monidhamoshanthi@gmail.com
Phone No:9003135888

‘Address:129/99,Perambur High Road Perambur
Product Price Chennai, Tamilnadu

100 PinCode:600011
Total Price:100.0

Product Quantity Product Details

Product Name:milet biscts

Price 100
Product Quantiy
L O) <
L ® <
12:29 PM | 55.0kB/s & © 12:29 PM | 21.8KB/s & ©
Tparian INdigrain
INdigrain 9
Select Bank
Preferred Payment Methods
© uri - Pronepe @ A D
Icicl Axis. Kotak Welcome to Razorpay Software Private Ltd Bank
swm UPI - PayTM | This is just a demo bank page.
va @ B You can choose whether to make this payment successful
Cards, UPI & More ves DB 808 ernot
Card Select a different bank ST Failure
Visa, MasterCard, RuPay, and Maestro Axis Bank .

» UPI

Pay with installed app, or use others

” @ paytm p

Google Phonepe PayT™ Others
Pay

40 Netbanking

" Allindian banks

9 Wallet

Mobikwik & More

&\ EMI

EMI via ZestMoney Account A Secured by dRazorpay

g% Pay Later 2100 R
Simpl, LazyPay, ICICI & More View Details a ® <
- - ® <

a ® <

62

E-Marketplace

IIT™

lI'H m
b | t INCUBATION
BUI/LD SELL
CLUuB resel%racrﬁ\((

Part- B Build the Backend and Database for E-marketplace mobile

application.

Building the backend of E-marketplace using Spring Boot framework.

Install Java SE 13 (JDK)
Note: Although newer versions of the JDK are available, NetBeans requires a file included

in versions 13 and earlier for the installation.

1. Follow this link to download Java SE 13:

https://www.oracle.com/java/technologies/javase/jdk13-archive-downloads.html

2. Select the Windows x64 Installer option for JDK 13.0.2 (scroll down the page to reach
this spot). Click the link on the right side of this option to download it.

Note: You may need to create an Oracle User account to download this software. If so, you
can use your college email account and address when setting up your account:

3. After downloading, double-click the downloaded file (likely in your Downloads
folder) and follow the installation instructions. Leave default settings from the installer as
they are.

4, Now, let us set the JDK path.

Now, we will see how to set Java JDK Path (Environment Variable).

At first, copy the path wherein you installed the Java JDK. Let us copy it first. Remember, we
need to copy the bin path i.e. the following on our system:

C:\Program Files\Java\jdk-13\bin
Here’s the screenshot of the “bin” path, wherein we installed Java 13:

E-Marketplace

https://www.oracle.com/java/technologies/javase/jdk13-archive-downloads.html

IIT™M
INCUBATION

\\ CELL

| < | bin

“ Home Share View

<« Sl C:\Program Files\Java'jdk-13\bin|

Mame Date modified Type Size
s Quick access
server 0/6, 9 &6PM Filefolder
OneDrive | AmitThinks.java 10/6 1:25PM JAVA File 1KB
[This PC | api-ms-win-cere-console-11-1-0.dll 10/6 1:16 PM c 21 KB
i | api-ms-win-cere-console-11-2-0.d1l 10, 16 PM 21 KB
§ 3D Objects . . . - . oy
| api-ms-win-core-datetime-11-1-0.dll 6PM Application extens... 21KB
B Desktop | api-ms-win-cere-debug-11-1-0.dIl 16 PM Application extens... 21 KB
= Documents | api-ms-win-core-errorhandling-11-1-0.dll 16 PM cation extens... 21KB
J Downloads | api-ms-win-core-file-11-1-0.dll 16 PM Application extens... 24 KB
J_ Music | api-ms-win-core-file-11-2-0.dll 10 16 PM Application extens... 21KE
= Pictures api-ms-win-core-file-12-1-0.dll 10 16PM Application extens... 21 KB
Videos api-ms-win-cere-handle-1-1-0.dll 10/8, 16PM Application extens... 21 KB
api-ms-win-core-heap-11-1-0.dll 10/8, 16 PM 21 KB
= 05(C) . . .) .)
api-ms-win-core-interlocked-11-1-0.dll 0 &6 PM 2 21 KB
= NewValume (E) | api-ms-win-core-libraryloader-11-1-0.dIl 10/8, 16PM Application extens... 22 KB
H . “ . : ”
5. To set JDK Path, the easiest way is to type “Environment Variables” on Start. On

typing, the following would be visible:

o @
Best match

I\] Edit the system environment variables

Control panel
Settings

2 Edit environment variables for your
account

Search the web

2 environment variables - s 5
results Tutorials, Codes, Inte

/£ environment variables in windows 10 >)\ 1)

2 environment variables in python >

£ environment variables in linux >

L2 environment variables java >

2 environment variables in unix >

2 environment variables path >

£ environment variables not working >

pe environmentvariablesl) Add New Post <S...

6. Now, click on “Edit Environment Variables” and a new dialog box would be visible:

64

E-Marketplace

System Properties

Computer Name Hardware Advanced System Protection Remote

You must be logged on as an Administratorto make most of these changes.

Peformance

Visual effects, processar scheduling, memory usage, and virttual memory

User Profiles

Desktop settings related to your sign-in

Settings...

Startup and Recoveny

System startup, system failure, and debugging information

7. Now, click “Environment Variable” and a new dialog box will open. Go to “User

Variables” section.

Environment Variables

User variables for amit_

Variable

OneDrive
OneDriveConsumer
Path

TEMP

TMP

System variables

Variable

NUMBER_OF_PROCESS0RS
05

PATHEXT
PROCESSOR_ARCHITECTURE
PROCESS0OR_IDENTIFIER
PROCESS0OR LEVEL

Settings

Environment Variables...

Cancel

Value

C\Users\amit_OneDrive

C\Userstamit_\OneDrive
Ci\Users\amit_\AppData\Local\Microsoft\WindowsApps; " C\Users\...
ChUsers\amit_\AppData\Local\Temp
C\Users\amit_\AppData\Local\Temp

Value

4

Windows_NT

e gram Files (x86)\ImageMagi

.COM:; EXE;.BAT;.CMD;.VBS;.VBE; JS;.JSE:. WSF: \WSH; .MSC
AMDB4

Inteléd Family & Model 78 Stepping 3, Genuinelntel
[

8. Click “New”. Type PATH in the Variable name and add the Java JDK path “C:\Program
Files\Java\jdk-13\bin” as displayed in the below screenshot:

E-Marketplace

65

1 o £ +

Edit environment variable

C\Program Files (x86)\ImageMagick-7.0.8-016 ‘
C\Program Files\ImageMagick-7.0.8-Q16

FeSystemRoote\system32

FSystemRootTs

FSystemRoote\System 32\ Whem
%SYSTEMROOT %6\ System 32\ WindowsPowerShellw1.04

C:\Program Files (x86)\GtkSharpt2.12\bin
%SYSTEMROOT %\ System324 0 penS5HY,

Clxampphapache\bin

C:\Program Files (x86)\Intel\Intel(R) Management Engine Component... Move Up
C:\Program Files\Intel\Intel(R) Management Engine Components\DAL

C:\Program Files (x86)\Brackets\command Move Down
C\Users\amit_\Downloads\poi-bin-4.1.0-20190412\ poi-4.1.00poi-4.1.0..,
Cih\Users\amit_\Downloads\poi-bin-4.1.0-20190412\poi-4.1.00poi-exa...
Ch\Userstamit_\Downloads'poi-bin-4.1.0-20190412\poi-4.1.0\poi-exce... Edit text...
C\Users\amit_\Downloads\poi-bin-4.1.0-201904124poi-4.1. 0\ poi-oex...
C\Users\amit_\Downloads\poi-bin-4,1.0-20190412\ poi-4.1.0% poi-oox...

Ci\Users\amit_\Downloads\poi-bin-4,1.0-20190412\poi-4.1.0\poi-scrat...
| C:\Program Files\Java\jdk-13\bin _

Cancel

Above, press Ok.
9. Follow a similar process to set System Variables.
10. Now, we will verify the JDK installation.

Now, we can easily verify java installation was successfully or not using the following
command on command prompt:

java -version

Install Apache NetBeans IDE
Note: Don’t run the Apache NetBeans installer before Java is installed on your system.

1. Open the web page https://netbeans.apache.org/download/ .

Go to the NetBeans 17 download page by clicking one of the Download buttons.
2. In the next page, make sure to download the Windows 64-bit version of NetBeans.

3. Now go to your Downloads folder (or wherever you had NetBeans downloaded to)
and double-click the NetBeans installer file to run it (Apache-NetBeans-17-bin-windows-
x64.exe). Click the Next button on the NetBeans 17 installer window.

4, In the License Agreement window, click the checkbox to accept the terms. Then
click Next.
5. In the next window, under JDK for the Apache NetBeans IDE, make sure that the

66
E-Marketplace

https://netbeans.apache.org/download/

.'|'H IT™

| tl N JINCUBATION
BU/LD ELL
B researach c

location of the correct JDK has been chosen. You may have multiple versions of JDK on
your computer. The version you installed in Step 1 should be specified here (change to the
right one if it says different).

6. Click Install in the next window.

Installation may take a few minutes. After it’s done, click the Finish button.

A Java Spring project requires a set of libraries and packages that enable the requested
features. For our project, we select Maven as the project management tool. Maven helps
to build and manage your Java project. It creates a so-called POM (Project-Object-Model)
with all the information and configuration details of the project, which is saved in a
pom.xml file.

Importing the Project

1. Open Apache NetBeans, select File » Open Project
O B et view Nvigate Soure Refactor Run Debug Profile Team Tooks Window Help Apache NetBeans IDE 13 - X
3 NewProject.. Ctrl+Shift-N (%) < O e
il [& b Bigve, Lo Lo
F New File. CtrlsN [oermes,
— StatPage * [& SimpleControllerjava % v
T
i | | Lear & Discover My NetBeans What's New Show On Startup - |
H Close Al Projects —_—
Open File..
Open Recent File >
Project Groups...
Recent Projects Install Plugins Activate Features

Import Praject >

Export Project >
port Project mavenproject1 Add

queges an
demo plugins from the

Page Setup..

Exit

Qutput % .

(3) Notifications Inspector Search Results INS.

2. Unzip the emarketplace-Copy.zip folder and select the unzip folder containing the
Maven project you want to import.

67
E-Marketplace

IT™
INCUBATION
CELL

() File Edit View MNavigate Source Refactor Run Debug Profile Tesm Tools Window Help Apache NetBeans IDE 13 Q Search (Ctrl+l) = X

PEES DE QO TH I caBR O EueyG G

Projects % Services Start Page [SimpleControllerjava % v
30 Qap
o © emarket
& Source Packages . Apache
g B TestPackages A
B) Other Sources () Open Project X
& & Dependencies
® Runtime Dependencies Look In: Build an E-Marketplace mobile application ML Y
& JavaDependencies
& Project Files Recent tems. Project Name:
@) twin emarketplace_indigrain_app an E-Marketplace mobile application\emarket
- Trust Project Build Seript tivate Features
Desktop Open Required Projects:

tBeans turs on functionality as you use
= tart cresting and opening projects and
DE willjust activate the festures you

d. making your experience quicker and
ner. Altematively, you ean activate
[ftures manually.

This PC

Documents

@v File Name: CAU: an Open Project

Network

Files of Type: | project Folder v Ci Opens the project located in the selected folder.

() Notifications Inspector Q Search Results

Click Open Project to complete the process.

3. The directory structure of the spring boot project will look like this.

@ emarket
i Source Packages
EE| ComLspring.app
@ Samplefpplication.java
3] SimpleController.java
= UserfMgtController.java
EE| com.spring.app.model
Category.java
Customer,java
Merchant.java
Order.java
Orderproducts.java
Product.java
[com.spring.app.service
[Test Packages

(6] (B! [[[(B

0 Other Sources

&0 srofmain/resources
[<default package>

application.properties

Dependencies

g FRuntime Dependencies
g Java Dependencies
& Project Files
= pom.xml
nb-configuration.zml

68
E-Marketplace

H | t INCUS&K»
BUILD t
B research | ©

To configure your project to use JDK 13:

1. Right-click the project in the Projects window and select Properties from the context
menu.
28 In the Project Properties dialog box, choose Build -> Compile and set JDK 13 as the

Java Platform

) File Edit View MNavigate Source Refactor Run Debug Profile Team Tools Window Help emarket - Apache NetBeans IDE 13 Q- search (Ctrl+ - o X
FEHES DO (wwew @ TH b 4B O ket G
Projects X | Services Favorites Files Q) Project Properties - emarket % ~ 0O
@ app .
&) app ategories:
&) emarket @ General Java Platform: | JDK 13 Manage Java Platforms.
e s - Show On Startup |~
& emarket ources] Compile on /DK 18 n Startup | |
[emarket] © Configurations e
® If selected, iles 2
Frameworks DK 1.8 (Default)
@ lavaScript Libraries This option saves you ume wrien you run or aepuy your spprcatorn o tests in the IDE.
@
Build Learn More about Compile On Save feature in Maven projects
> Compile
@ Spring Framework [/] Generate Debugging Info
@
Run Report Uses of Deprecated APls E Features
@ Actions
o JavaScript
© Requirels is turns on functionality as you use
@ License Headers ‘reating and opening projects and
& Formatting lill just activate the features you
© CheckStyle Formatting aking your experience quicker and
o Hints Alternatively, you can activate
manually.
Cancel Help
£

() Notifications

3. Click OK to save the changes.

Create POJOs (plain old Java object) for Merchant, Customer, Category, Product, Order, and
Orderproducts.

1. Customer.java

In the Projects window, Inside project file > source packages > com.spring.app.model. Open
Customer. java file and write the following code.

Inside Customer class, Create private fields with their data types for id, name, email, phone,
password, addressno, area, city, state, and pincode.

private String id;
private String email;
private String password;

private String phone;

69
E-Marketplace

lrfi IT™

b | t||| INCUBATION
BUI/LD SELL
CLUB resea rach ‘

private String name;
private String addressno;
private String area;
private String city;
private String state;

private String pincode;

2. Create an empty constructor (Hibernate, which handles the JPA requires an empty
constructor). Write the following code.

public Customer() {}

3. Create a constructor with the arguments id, name, email, phone, password,
addressno, area, city, state, and pincode. Write the following code.

public Customer(String email, String password, String phone, String name, String

id, String addressno, String area, String city, String state, String pincode) {
this.id = id;
this.email = email;
this.password = password;
this.name = name;
this.phone = phone;
this.addressno = addressno;

this.area = area;

this.city = city;
this.state = state;
this.pincode = pincode;

70
E-Marketplace

CELL

I}ILD |’tmh INCILIJ-E[XIT\ON

4, Create accessor methods (i.e., getter and setter methods) for this field.

The IDE can create accessor methods for you. In the editor, right-click on ‘value® and choose Insert
Code (or press Alt-Insert). In the popup menu, choose Getter and Setter.

) File Edit View Navigate Source Refactor Run Debug Profle Team Tools Window Help emarket - Apache NetBeans IDE 13 % =

MEHES D cactuconti> v @ T W P - B gssebon Cb o

Projects X | Services | Favorites | Files _ StatPage * [&] Custom[" e - “
o . ~—————— (J Generate Getters and Setters X
BE com.spring.app.senvice Source History []
@ TestPackages

& Other Sourees Select fields to generate getters and setters for

® Dependencies 2: BV Custome
& Runtime Dependencies - i \él@l addressno ; String
& Java Dependencies - o \él@l areas String
& Project Files. - \él@l <ity s String
D app s \él@l email : String
@) emarket e ()& id : String
& emrket T~ iz 8 (18 neme : String
& Source Packages a7) (/)87 passwerd : String
& com.spring.app a8 (/)& phene: String
[E Sampleapplication java as (/)& pincede : String
& SimpleControllerjava 50 (/)8 state : String
[# UserMgtController java 51 }

8 com.spring.app.model
[# Category.jova
[Customerjava
[# Merchantjava
[# Orderjova
[# Orderproducts.java
[# Productjava
[EH com.spring.app.service
@ TestPackages
& Other Sources

" Output % Search Results -
B sr/main/resources

Select All Select None
[<defoutt packege>
[E spplication.properties Encapsulate Fields
& Dependencies
& Runtime Dependencies Cancel

® Java Dependencies

@ Project Files
@ pom.xml
nb-configuration.xml

@) Notifications 491 INS

. 0316PM
28-00-2023

]

In the dialog that displays, select all the fields, then click Generate. The getValue() and setValue()
methods are added to the Customer class.

5. Merchant.java

In the Projects window, Inside project file > source packages > com.spring.app.model. Open

Merchant. java file and write the following code

Inside Merchant class, Create private fields with their data types for id, name, email, phone, gstno,
and password.

private String id;
private String email;
private String password;
private String phone;
private String name;

private String gstno;

6. Create an empty constructor (Hibernate, which handles the JPA requires an empty

71
E-Marketplace

IIT™

:‘l}?k.[) m IN%%%TON
CLUB

constructor). Write the following code.

public Merchant() {}

7. Create a constructor with the arguments id, name, email, phone, gstno, and
password. Write the following code.

public Merchant(String email, String password, String phone, String name, String

gstno, String id) {
this.email = email;
this.password = password;
this.phone = phone;
this.name = name;
this.gstno = gstno;
this.id = id;

8. Create accessor methods (i.e., getter and setter methods) for this field.

The IDE can create accessor methods for you. In the editor, right-click on “value™ and choose Insert
Code (or press Alt-Insert). In the popup menu, choose Getter and Setter.

(J File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help emarket - Apache Ne X =
PEHED D cosmnconi> | Q- B b s lpr B zagaie, G G
Projects X Services | Favorites | Files = _ StertPage X [&] Custom e e— -
By U Generate Getters and Setters X
[com.spring.app.serice Source | History [=
B TestPackages
25 public Mer{ Selectfieldsto generate getters and setters for
B Other Sources ?
5 oependencs wl TS ercror
& Runtime Dependencies s N (187 email : Sting
5 Jors Depentiontics 22 public [¥1& gstno : String &, String gstmo, String id) {
a3 -
& Project Files. o (/I8 id: String
D app . I8 name:: String
T emarket = (/183 password: String
& emarket = (1€ phone:: String
&3 Source Packages 2
&5 comaspring.app as }
(& sampleapplication java a0
&l SimpleControllerjava a1
|8 UserMgtController java az ¥
[com.spring.app.model 43
(8 category.java
(€ Customerjava
(€ Merchantjava
(€ Orderjava
(€ orderproducts java
(8 Productjava
B8 comspring.appsenice
& TestPackages
T Other Sources Output X | Search Results _
a0 sro/mainresources SelectAll | Select None
[<default package>
[E application.properties Encapsulate Fields
& Dependencies
& Funime Dependencis Conce
& Java Dependencies
& Project Files.
@ pomaxml
nb-configuration.cml
(@) Notifications 414 INS.

. 0s41PM
]

28-02-2023

In the dialog that displays, select all the fields, then click Generate. The getValue() and setValue()
methods are added to the Merchant class.

72
E-Marketplace

lrfi IT™

b | t||| INCUBATION
BUI/LD SELL
CLUB research | ¢

9. Category.java

In the Projects window, Inside project file > source packages > com.spring.app.model. Open
Category. java file and write the following code

Inside Category class, Create private fields with their data types for id, name, and image.
private String id;
private String image;

private String name;

10. Create an empty constructor (Hibernate, which handles the JPA requires an empty
constructor). Write the following code.

public Category() {}
11. Create a constructor with the arguments name, image, and id. Write the following
code.
public Category(String name, String image, String id) {
this.name = name;

this.image = image;

this.id = id;
}
12. Create accessor methods (i.e., getter and setter methods) for this field.

The IDE can create accessor methods for you. In the editor, right-click on “value™ and choose Insert
Code (or press Alt-Insert). In the popup menu, choose Getter and Setter.

73
E-Marketplace

‘rfi 1‘ IT™

i | t||| JINCUBATION
BUI/LD SELL
CLUB rese%racr (

() File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help emarket - Apach
PEES B <ttt | @ T P Do lE- B paesess G (b

Projects X Services | Favorites | Files = _ StartPage * [& Custom e v

) Generate Getters and Setters X

Source History i) £
@ TestPackages o private

f Other Sources P private 5 !
B Depenncie 3 BT G, E
& Runtime Dependencies ok public Catd [I& id: String

& Java Dependencies 11 } ()& image: String

& Project Files. 1s (/)& name : String

© wep 1 pubtic
T emarket 17 this.ng
}

[com.spring.app.senvice

Select fields to generate geters and setters for:

& emarket 1
&1 Source Packages
&5 comaspring.app
(& sampleapplication java
&l simpleControllerjava
|8 UserMgtController java
[com.spring.app.model
(€] Category.java
(€ Customerjava
(8 Merchantjava
(€ Orderjava
(€ orderproducts java
(8 Productjava
B8 comspring.appsenice
@ TestPackages
T Other Sources Output X Search Results
Be src/main/resources
[<defautt package>
[E application.properties Encapsulate Fields
& Dependencies
& Funime Dependencis Conce
& JavaDependencies
& Project Files
s pomxml
nb-configuration.cml

(@) Notifications 224 INS.

Select All Select None

. 0&11PM

S poa T

In the dialog that displays, select all the fields, then click Generate. The getValue() and setValue()
methods are added to the Category class.

13. Product.java

In the Projects window, Inside project file > source packages > com.spring.app.model. Open
Product.java file and write the following code

Inside Product class, Create private fields with their data types for id, name, description, price,
category, quantity, initialquantity and image.

private String name;
private String id;

private String description;
private String image;
private String price;
private String category;
private String quantity;

private String initialquantity ="1";

14. Create an empty constructor (Hibernate, which handles the JPA requires an empty

74
E-Marketplace

lrfi IT™

b | t||| INCUBATION
BUI/LD SELL
CLUB resea rach ‘

constructor). Write the following code.
public Product() {}

15. Create a constructor with the arguments id, name, description, price, category,
guantity, initialquantity and image. Write the following code.

public Product(String name, String description, String image, String price, String

category, String quantity, String initialquantity, String id) {
this.id = id;
this.name = name;
this.description = description;
this.image = image;
this.price = price;

this.category = category;

this.quantity = quantity;

this.initialquantity = initialquantity;

}

16. Create accessor methods (i.e., getter and setter methods) for this field.

The IDE can create accessor methods for you. In the editor, right-click on ‘value® and choose Insert
Code (or press Alt-Insert). In the popup menu, choose Getter and Setter.

75
E-Marketplace

‘rfi 1‘ IT™

i | t||| JINCUBATION
BUI/LD SELL
CLUB rese%racr (

File Edit View MNavigate Source Refactor Run Debus Profile Team Tools Window Hel) emarket - Apache Net! P\ -
9 9 P
= 5 e GRe . 4 - (M- Y o
FEE®S D <detcontic- @ PP D G- ey C Co
Projects X Services | Favorites | Files = _ StartPage * [& Custom e —— -
=2t () Generate Getters and Setters X
ESl comspring.opp.senice Source History) ®
Test Packages
g 9 1 61 Select ficlds to generate getters and setters for
F Other Sources
17 o
B Depenncie m e ———
& Runtime Dependencies s . 5ol /18] category : Sring
& Java Dependencies g 18] description : String
® & Project Files. m ? public Prof %:%m S(rmsg
app a /1% image: String
&) emarket 23 \él@ initialquantity : String
&) emarket 21 public Prof (/& name : String fce, String catagory, String quancity, String initialquantity, |
&3 Source Packages 25 this.id (18 price: String
&2 com.spring.app 26 this.nd (/)& quantity : String
(& sampleapplication java 27 E T
&l simpleControllerjava 28
|8 UserMgtController java 25
[com.spring.app.model &0
[# categoryjava 3L
[& customerjava =2
[Merchantjava : ¥
(€ Orderjava e
[& Orderproducts java ;)
(€ Productjava s
8 com.spring.appsenice
& TestPackages
G Other %““"E'S Output X | Search Results —
a6 ff“(";;”"f”“';“ N SelectAll | Select None
2] ault package
[E application.properties Encapsulate Fields
& Dependencies
& Funime Dependencis Conce
& Java Dependencies
& Project Files.
@ pomaxml
% nb-configuration.cml
() Notifications 351 INS

In the dialog that displays, select all the fields, then click Generate. The getValue() and setValue()
methods are added to the Product class.

17. Order.java

In the Projects window, Inside project file > source packages > com.spring.app.model. Open
Order. java file and write the following code.

Inside Order class, Create private fields with their data types for customerid, customername,
customeremail, customerphoneno, customeraddressno, customerarea, customercity,
customerstate, customerpincode, totalprice, ordereddatetime, orderid, orderrefid, and productlist.

private String totalprice;
private String customerid;
private String customername;
private String customeremail;
private String customerphoneno;
private String customeraddressno;
private String customerarea;
private String customercity;

private String customerstate;

76
E-Marketplace

HT™
I}lLD | tm INCUBATION
U research | <

d

private String customerpincode;
private String ordereddatetime;
private int orderid;
private int orderrefid;

private List<Orderproducts> productlist;

18. Create an empty constructor (Hibernate, which handles the JPA requires an empty
constructor). Write the following code.

public Order() {}

19. Create a constructor with the arguments customerid, customername,
customeremail, customerphoneno, customeraddressno, customerarea, customercity,
customerstate, customerpincode, totalprice, ordereddatetime, orderid, orderrefid. Write
the following code.

public Order(String totalprice, String customerid, String customername, String
customeremail, String customerphoneno, String customeraddressno, String
customerarea, String customercity, String customerstate, String customerpincode,

String ordereddatetime, int orderid, int orderrefid) {
this.totalprice = totalprice;
this.customerid = customerid;
this.customername = customername;
this.customeremail = customeremail;
this.customerphoneno = customerphoneno;
this.customeraddressno = customeraddressno;

this.customerarea = customerarea;

this.customercity = customercity;

77
E-Marketplace

CELL

I}ILD |’tmh INCILIJ-E[XIT\ON

this.customerstate = customerstate;

this.customerpincode

customerpincode;

this.ordereddatetime

ordereddatetime;
this.orderid = orderid;

this.orderrefid = orderrefid;

}
20. Create accessor methods (i.e., getter and setter methods) for this field.

The IDE can create accessor methods for you. In the editor, right-click on ‘value™ and choose Insert
Code (or press Alt-Insert). In the popup menu, choose Getter and Setter.

() File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help emarket - Apache Ne Q- - o
FEES B <defauttconi: | - B B D - @ Hh- B \ellemmey b C
Projects X | Services | Favorites | Files | _ StartPage X [& Custom Cme v
B sro/main/issources —— = () Generate Getters and Setters X =
[<defautt package> o e
[E application.properties C pustic oril e o oS String 1, String Strinc
PP prop 40 pul g g g
& Dependencies a1 tnis.of [EBYIED Order
& Runtime Dependencies a2 this.cy (/|8 customeraddressno : String
& Java Dependencies a3 this.cy (/8] customerarea: Stiing
& Project Files a1 this.cf (/)& customercity : String
@ pomaxml a5 this.cy (871 customeremail: String
nb-configuration.cml €z chis.cf (/)87 custommerid : String
@ emarket @ tnis (/)& customername : String
@ Source Packages o cthis.cj [/ customerphoneno:: String
[com.spring.app & his.of (/)& customerpincode: String
[sampleapplicationjava f; chis.of (1€ customerstate: String
[simpleControllerjava b bl (/&7 ordereddatetime : String
[€ userMgtControllerjava - e (16 orderid: int
[com.spring.app.model o) 18] orderrefid : int
[# categoryjava = (/&1 productlist : List< Orderproducts>
[custornerjava = (/)& totalprice : String
[€ Merchantjava & 1
(€ Orderjava 58
(€ Orderproductsjava
[€ Productjava
B comspring.sppenice
B TestPackages
T Other Sources Output X | Search Results _
an Sre/main/resources SelectAll | Select None
[<default package>
[E application.properties Encapsulate Fields
& Dependencies
& Runtime Dependencies Cancel
& JavaDependencies
@ Project Files.
@8 pomxml
nb-configuration.xml
(&) Notifications 56:2 INS

. 1224PM o

01-03-2023

In the dialog that displays, select all the fields, then click Generate. The getValue() and setValue()
methods are added to the Order class.

21. Orderproducts.java

In the Projects window, Inside project file > source packages > com.spring.app.model. Open
Orderproducts.java file and write the following code

Inside Orderproducts class, Create private fields with their data types for productname,
productprice, productquantity, productquantity, productid, productimage, and productdescription.

private String productname;

private String productprice;

78
E-Marketplace

lrfi IT™

b | t||| INCUBATION
BUI/LD SELL
CLUB resea rach ‘

private String productquantity;
private String productid;
private String productimage;

private String productdescription;

22. Create an empty constructor (Hibernate, which handles the JPA requires an empty
constructor). Write the following code.

public Orderproducts() {}

23. Create a constructor with the arguments productname, productprice,
productquantity, productquantity, productid, productimage, and productdescription. Write
the following code.

public Orderproducts(String productname, String productprice, String

productquantity, String productid, String productimage, String productdescription)

{

this.productname = productname;
this.productprice = productprice;
this.productquantity = productquantity;
this.productid = productid;

this.productimage = productimage;
this.productdescription = productdescription;

}

24, Create accessor methods (i.e., getter and setter methods) for this field.

The IDE can create accessor methods for you. In the editor, right-click on “value™ and choose Insert
Code (or press Alt-Insert). In the popup menu, choose Getter and Setter.

79
E-Marketplace

H | t| N INCUgXT\ON
BUI/LD SELL
CLUuB rese%racr (

O Fille Edit View MNavigate Source Refactor Run Debug Profile Team Tools Window Help

FEES D <acdoutconti- | Q- T B D - MR- B - PEEmEg G Co
e ites ——

Files _ StatPage % [& Custom . v
(¢]

Generate Getters and Setters. X

Source History [[¢
o7

ty, String productid, String String pri

e iin
V&3 p trin

9
(187 productquantity : String

a0
a1

ES)

Output X Search Results -
SelectAll | Select Nane

Encapsulate Fields

In the dialog that displays, select all the fields, then click Generate. The getValue() and setValue()
methods are added to the Orderproducts class.

Create Spring Boot API Controller for merchant and customer.

package is used to implement a Spring Boot RestAPI controller to handle all
incoming requests (post/get/put/delete) and response to rest-client.

Create REST end points that performs the basic database operations such as Create, Read,
Update, Delete

Merchant
e Handling merchant login
e Manage Categories
o List category
o Insert category
o Delete category
e Manage Products
o List product
o Insert product
o Update product
o Delete product
e List Received Order
Customer

e Handling customer login
e Handling customer register
e Manage Profile

80
E-Marketplace

H | t [NCILIJE/'\\AT\ON
BUILD AU
B resea rach ‘

List Order

List Categories

List Products

Order checkout

Generate Invoice & send via email

1. Handling merchant login
This method is used to login as merchant.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController. java file and write the following code.

@CrossOrigin(origins = "*")
@RequestMapping(value = "/merchantlogin", method = RequestMethod.POST)

public String loginMerchant(@RequestBody Merchant merchant) {

String s = "select count(*) from merchant where memail=? AND mpassword=?";
System.out.println("s = " + merchant.getEmail());
System.out.println("s = " + merchant.getPassword());

System.out.println("s

+s);

int count = jdbc.queryForObject(s, new Object[]{merchant.getEmail(),
merchant.getPassword()}, Integer.class);

System.out.println("count = " + count);

if (count > @) {

return "Successfull”;

} else {

81
E-Marketplace

| tm INCIUIEXIT\ON

H
U!LD resea rCh CELL
Pa

CtUB

return "Failure";

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/merchantlogin) annotation sets the base path to the resource
endpoints in the controller as /merchantlogin.

@RequestMapping (method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send email and password of a merchant.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/merchantlogin” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the loginMerchant method.

Inside loginMerchant method is where you create the query to count data values from the merchant
table.

The SQL SELECT statement can be used along with COUNT (*) function to count of all rows present in
the merchant table and SQL query that returns a value object like String then you can use the
qgueryForObject() method of JdbcTempalte class. This method takes an argument about what type of
class query will return and then convert the result into that object and returns it to the caller.

2. List category
This method is used to display categories.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController. java file and write the following code.

@CrossOrigin(origins = "*"
@RequestMapping(value = "/category", method = RequestMethod.GET)
public JSONObject category() {

String s = "select catcategoryname AS name, catcategoryimage AS image,

catid AS id from category";

82
E-Marketplace

| tm INCIUIEXIT\ON

H
U!LD resea rCh CELL
Pa

CtUB

List<Category> mrlist = jdbc.query(s, new

BeanPropertyRowMapper(Category.class));

System.out.println("mrlist = " + mrlist);
JSONObject json = new JSONObject();
json.put("Category", mrlist);

if (Imrlist.isEmpty()) {

json.put("Category", mrlist);

System.out.println("json = " + json);

return json;

return json;

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/category") annotation sets the base path to the resource endpoints in the
controller as /category.

@RequestMapping (method = RequestMethod.GET), and is used to map HTTP GET requests to
the mapped controller methods. We used it to return all the categories.

Inside category method is where you create the query to return a list of categories from the category
table.

The SQL string contains a query to select all the category details from the category table and if your
SQL query is going to return a List of objects instead of just one object then you need to use the
query () method of JdbcTempalte. These methods provide to convert the result to a custom object.
For instance, the simplest way to query and handle results is via the query (String, RowMapper)
method. This method uses RowMapper to map the returned row to an object.

83
E-Marketplace

‘rfi IT™

i | t||| INCUBATION
BUI/LD “ELL
CLUB resea rach ‘

3. Insert category
This method is used to insert categories.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController. java file and write the following code.

@CrossOrigin(origins = "*")
@RequestMapping(value = "/insertcategory", method = RequestMethod.POST)
public String insertCategory(@RequestBody Category category) {

String s = "insert into

category(catcategoryname,catcategoryimage)values(?,?)";

System.out.println("s = " + category.getName());
System.out.println("s = " + category.getImage());
System.out.println("s = " + s);

int a = jdbc.update(s, category.getName(), category.getImage());
System.out.println("a = " + a);
if (a ==1) {

return "Inserted Successfully";

} else {

return "Inserted failure";

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

84

E-Marketplace

| tm INCIUIEXIT\ON

H
U!LD resea rCh CELL
Pa

CLUB rk

@RequestMapping ("/insertcategory") annotation sets the base path to the resource
endpoints in the controller as /insertcategory.

@RequestMapping (method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send name and image of a category.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/insertcategory” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the insertCategory method.

Inside insertCategory method is where you create the query to insert a category in the category
table.

The update method provided by JdbcTemplate can be used for insert, update, and delete
operations.

The SQL string is used to perform a single insert operation. Here '?' means it acts as the parameter
which we need to pass while executing the query. Now to execute the query, we have used the
JdbcTemplate update() method, which takes the query as an argument, and other than the query
there are 2 values that correspond to 2 '?' respectively.

4, Delete category
This method is used to delete categories.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController. java file and write the following code.

@CrossOrigin(origins = "*"
@RequestMapping(value = "/deletecategory", method = RequestMethod.POST)

public String deleteCategory(@RequestBody Category category) {

String s = "delete from category where catid= (+ category.getId() +

"

System.out.println("s = " + s);

int a = jdbc.update(s);

System.out.println("a = " + a);

if (a == 1) {

85
E-Marketplace

| tm INCUEXIT\ON

H
U!LD resea rCh CELL
Pa

CtUB

return "Deleted Successfully";
} else {

return "Deleted Failure";

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/deletecategory") annotation sets the base path to the resource
endpoints in the controller as / deletecategory.

@RequestMapping (method = RequestMethod.POST is used to map HTTP POST request to the
mapped controller methods. We used it to send id of a category.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/deletecategory” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the deleteCategory method.

Inside deleteCategory method is where you create the query to delete categories from the category
table.

Create a SQL string to delete category by ID from category table. Call the update method of
JdbcTemplate and pass the string to be bound to the query.

5. List product
This method is used to list products.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")
@RequestMapping(value = "/listproduct"”, method = RequestMethod.GET)

public JSONObject product() {

86
E-Marketplace

H HTM
BYD PRI, 1o
pa

CtUB

String s = "select proid AS id, proname AS name, proimage AS image,
prodescription AS description, proprice AS price, procategory AS category,

proquantity AS quantity, proinitialquantity AS intialquantity from product";

List<Product> mrlist = jdbc.query(s, new

BeanPropertyRowMapper (Product.class));

System.out.println("mrlist = " + mrlist);
JSONObject json = new JSONObject();
json.put("Product"”, mrlist);

if (Imrlist.isEmpty()) {

json.put("Product"”, mrlist);

System.out.println("json = " + json);

return json;

return json;

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/listproduct") annotation sets the base path to the resource endpoints in
the controller as /listproduct.

@RequestMapping (method = RequestMethod.GET) is used to map HTTP GET request to the
mapped controller methods. We used it to return all the products.

Inside product method is where you create the query to return a list of products from the product
table.

The SQL string contains a query to select all the product details from the product table and if your

SQL query is going to return a List of objects instead of just one object then you need to use the

87
E-Marketplace

‘rfi IT™

i | t||| INCUBATION
BUI/LD SELL
CLUB resea rach ‘

query () method of JdbcTempalte. These methods provide to convert the result to a custom object.
For instance, the simplest way to query and handle results is via the query (String, RowMapper)
method. This method uses RowMapper to map the returned row to an object.

6. Insert product
This method is used to insert products.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController. java file and write the following code.

@CrossOrigin(origins = "*"
@RequestMapping(value = "/insertproduct"”, method = RequestMethod.POST)
public String insertProduct(@RequestBody Product product) {

String s = "insert into
product(proname,proimage,proprice,prodescription,procategory,proquantity,proinitia

lquantity)values(?,?,?,?,?,?,?)";

System.out.println("s = " + product.getName());
System.out.println("s = " + product.getImage());
System.out.println("s = " + product.getPrice());
System.out.println("s = " + product.getDescription());
System.out.println("s = " + product.getCategory());
System.out.println("s = " + product.getQuantity());
System.out.println("s = " + product.getInitialquantity());
System.out.println("s = " + s);

88
E-Marketplace

| tm INCIUIEXIT\ON

H
U!LD resea rCh CELL
Pa

CtUB

int a = jdbc.update(s, product.getName(), product.getImage(),
product.getPrice(), product.getDescription(), product.getCategory(),

product.getQuantity(), product.getInitialquantity());

System.out.println("a = " + a);
if (a ==1) {

return "Inserted Successfully";
} else {

return "Inserted failure";

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/insertproduct™) annotation sets the base path to the resource
endpoints in the controller as /insertproduct.

@RequestMapping (method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send name, image, price, description, quantity, and initial
guantity of a product.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/insertproduct” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the insertProduct method.

Inside insertProduct method is where you create the query to insert a product in the product table.

The update method provided by JdbcTemplate can be used for insert, update, and delete
operations.

The SQL string is used to perform a single insert operation. Here '?' means it acts as the parameter
which we need to pass while executing the query. Now to execute the query, we have used the
JdbcTemplate update() method, which takes the query as an argument, and other than the query
there are 7 values that correspond to 7 '?' respectively.

89
E-Marketplace

‘rfi IT™

i | t||| INCUBATION
BUI/LD SELL
CLUB resea rach ‘

7. Update product
This method is used to update products.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController. java file and write the following code.

CrossOrigin(origins =

@ igin(origi "*")
@RequestMapping(value = "/updateproduct"”, method = RequestMethod.POST)
public String updateProduct(@RequestBody Product product) {

String s = "update product set proname= ?, prodescription= ?, procategory=

?, proprice= ?, proquantity= ? where proid=('" + product.getId() + "')";

System.out.println("s

+ product.getName());

System.out.println("s =

+

product.getDescription());

System.out.println("s =

+

product.getCategory());

+

System.out.println("s = product.getPrice());

System.out.println("s =

+

product.getQuantity());

+

System.out.println("s = s);

int a = jdbc.update(s, product.getName(), product.getDescription(),

product.getCategory(), product.getPrice(), product.getQuantity());
System.out.println("a = " + a);
if (a ==1) {
return "Updated Successfully";

} else {

return "Updated Failure";

90
E-Marketplace

CtUB

.IrH HTM
BYD PRI, 1o
a

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/uodateproduct™) annotation sets the base path to the resource
endpoints in the controller as /updateproduct.

@RequestMapping (method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send name, image, price, description, quantity and initial
quantity of the product.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/updateproduct” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the updateProduct method.

Inside updateProduct method is where you create the query to update a product in the product
table.

The update method provided by JdbcTemplate can be used for insert, update, and delete
operations.

The SQL string is used to update the product details by ID and pass the string to the update method
of JdbcTemplate followed by object arguments of type string which are the name, description,
quantity, price, and category. Note that the ID is only used to find the product to be updated but the
ID itself is not updated.

8. Delete product
This method is used to delete products.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController. java file and write the following code.

@CrossOrigin(origins = "*"
@RequestMapping(value = "/deleteproduct"”, method = RequestMethod.POST)
public String deleteProduct(@RequestBody Product product) {
String s = "delete from product where proid= ('" + product.getId() + "')";

System.out.println("s = " + s);

o
E-Marketplace

CtUB

.er HTM
BUILD PRI, 1o
a

int a = jdbc.update(s);

System.out.println("a = " + a);
if (a ==1) {

return "Deleted Successfully";
} else {

return "Deleted Failure";

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/deleteproduct"™) annotation sets the base path to the resource
endpoints in the controller as /deleteproduct.

@RequestMapping (method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send id of a product.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/deleteproduct” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the deleteProduct method.

Inside deleteProduct method is where you create the query to delete product from the product
table.

Create a SQL string to delete the products by ID from product table. Call the update method of
JdbcTemplate and pass the string to be bound to the query.

9. List Received Order
This method is used to display received orders.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController. java file and write the following code.

92
E-Marketplace

H HTM
BYD PRI, 1o
pa

CtUB

@CrossOrigin(origins = "*")

g g
@RequestMapping(value = "/merchantorder", method = RequestMethod.POST)
public JSONObject order() {

String s = "select distinct osrefid AS orderrefid, max(oscustomername) AS
customername, max(oscustomeremail) AS customeremail, max(oscustomerphone) AS
customerphoneno, max(oscustomeraddressno) AS customeraddressno,
max(oscustomerarea) AS customerarea, max(oscustomercity) AS customercity,
max (oscustomerstate) AS customerstate, max(oscustomerpincode) AS customerpincode,
max (ostotalprice) AS totalprice, max(osordereddatetime) AS ordereddatetime from

ordersummary group by osrefid order by osrefid";

System.out.println("s = " + s);

List<Order> orderidlList = jdbc.query(s, new

BeanPropertyRowMapper(Order.class));

System.out.println("orderidList = " + orderidList.isEmpty());

JSONArray orderArr = new JSONArray();

JSONObject orderObj = new JSONObject();

if (lorderidList.isEmpty()) {

for (Order orObj : orderidList) {

JSONObject orderDetObj = new JSONObject();
orderDetObj.put("orderrefid"”, orObj.getOrderrefid());
orderDetObj.put("totalprice"”, orObj.getTotalprice());

orderDetObj.put("customername”, orObj.getCustomername());

orderDetObj.put("customeremail™, orObj.getCustomeremail());

93
E-Marketplace

| tm INCILIJE/'\\/IT\ON

BU/LD JELL
U resel%rach ‘

orderDetObj.put("customerphoneno"”, oroObj.getCustomerphoneno());

orderDetObj.put("customeraddressno”,

orObj.getCustomeraddressno());

orderDetObj.put("customerarea", orObj.getCustomerarea());

orderDetObj.put("customercity", orObj.getCustomercity());

orderDetObj.put("customerstate”, orObj.getCustomerstate());

orderDetObj.put("customerpincode”, orObj.getCustomerpincode());

orderDetObj.put("ordereddatetime”, orObj.getOrdereddatetime());

String t = "select osproductname AS productname, osproductprice AS
productprice, osproductimage AS productimage, osproductquantity AS
productquantity, osproductprice AS productprice from ordersummary where osrefid="

+ orObj.getOrderrefid();

System.out.println("t = " + t);

List<Orderproducts> productlist jdbc.query(t, new

BeanPropertyRowMapper (Orderproducts.class));

System.out.println("productlist + productlist.isEmpty());

System.out.println("productlist

+ productlist);
JSONArray pdlistArr = new JSONArray();
if (!productlist.isEmpty()) {

for (Orderproducts pdlist : productlist) {

JSONObject pdlisObj = new JSONObject();

94
E-Marketplace

| tm INCUEXIT\ON

H
U!LD resea rCh CELL
Pa

CtUB

pdlisObj.put("productname"”, pdlist.getProductname());

pdlisObj.put("productquantity”,

pdlist.getProductquantity());
pdlisObj.put("productprice"”, pdlist.getProductprice());
pdlisObj.put("productimage"”, pdlist.getProductimage());

pdlistArr.add(pdlisObj);

orderDetObj.put("pdlist", pdlistArr);

orderArr.add(orderDetObj);

orderObj.put("orderdetails"”, orderArr);

return orderObj;

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/merchantorder™) annotation sets the base path to the resource
endpoints in the controller as /merchantorder.

@RequestMapping (method = RequestMethod.POST) is used to map HTTP POST request to
the mapped controller methods. We used it to send customer details, order details and product
details.

Inside order method is where you create the query to return customer details, product details and
order details as list from the ordersummary table.

95
E-Marketplace

H | t INCILIJE/'\\AT\ON
BUILD AU
B research | ¢

The SQL s string contains a query to select the customer details, product details and order details
from the ordersummary table and if your SQL query is going to return a List of objects instead of
just one object then you need to use the query () method of JdbcTempalte. These methods provide
to convert the result to a custom object. For instance, the simplest way to query and handle results
is via the query (String, RowMapper) method. This method uses RowMapper to map the returned
row to an object.

10. Handling customer login
This method is used to login as customer.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*"
@RequestMapping(value = "/customerlogin", method = RequestMethod.POST)
public JSONObject loginCustomer(@RequestBody Customer customer) {

String s = "select cemail AS email, cpassword AS password, cname AS name,
cid AS id, cphone AS phone,caddressno AS addressno, carea AS area, ccity AS city,
cstate AS state, cpincode AS pincode from customer where cemail=CAST('" +
customer.getEmail() + "' AS VARCHAR) AND cpassword=CAST('" +

customer.getPassword() + "' AS VARCHAR)";

System.out.println("s = " + customer.getEmail());

System.out.println("s = " + customer.getPassword());

System.out.println("s

+ s);

List<Customer> mrlist = jdbc.query(s, new

BeanPropertyRowMapper (Customer.class));
System.out.println("mrlist = " + mrlist);

JSONObject json = new JSONObject();

json.put("Customerdetails"”, mrlist);

96
E-Marketplace

| tm INCIUIEXIT\ON

H
U!LD resea rCh CELL
Pa

CtUB

if (!'mrlist.isEmpty()) {

json.put("Customerdetails"”, mrlist);

System.out.println("json = " + json);

return json;

return json;

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/customerlogin) annotation sets the base path to the resource
endpoints in the controller as /customerlogin.

@RequestMapping (method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send email and password of a customer.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/customerlogin” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the loginCustomer method.

Inside loginCustomer method is where you create the query to return customer details as list from
the customer table.

The SQL s string contains a query to select the customer ID by email and password from the
customer table and if your SQL query is going to return a List of objects instead of just one object
then you need to use the query () method of JdbcTempalte. These methods provide to convert the
result to a custom object. For instance, the simplest way to query and handle results is via the query
(String, RowMapper) method. This method uses RowMapper to map the returned row to an object.

11. Handling customer registration
This method is used to register as customer.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController. java file and write the following code.

D7
E-Marketplace

HT™
H | tm INCUBATION
AT research | o
d
@CrossOrigin(origins = "*")
@RequestMapping(value = "/customerregister", method = RequestMethod.POST)
public String customerRegister(@RequestBody Customer customer) {

String s = "insert into

customer(cname,cemail, cpassword, cphone)values(?,?,?,?)";

System.out.println("s + customer.getEmail());

System.out.println("s = " + customer.getPassword());
System.out.println("s = " + customer.getName());
System.out.println("s = " + customer.getPhone());
System.out.println("s = " + s);

int a = jdbc.update(s, customer.getName(), customer.getEmail(),

customer.getPassword(), customer.getPhone());
System.out.println("a = " + a);
if (a ==1) {
return "Registered Successfully";

} else {

return "Registeration failure";

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/customerregister™) annotation sets the base path to the resource

98
E-Marketplace

| tm INCIUIEXIT\ON

H
U!LD resea rCh CELL
Pa

CtUB

endpoints in the controller as /customerregister.

@RequestMapping (method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send name, email ID, password, and phone No of a
customer.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/customerregister” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the customerRegister method.

Inside customerRegister method is where you create the query to insert customer details in the
customer table.

The update method provided by JdbcTemplate can be used for insert, update, and delete
operations.

The SQL string is used to perform a single insert operation. Here '?' means it acts as the parameter
which we need to pass while executing the query. Now to execute the query, we have used the
JdbcTemplate update() method, which takes the query as an argument, and other than the query
there are 4 values that correspond to 4 '?' respectively.

12. Manage profile

This method is used to update customer profile.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController. java file and write the following code.

@CrossOrigin(origins = "*"
@RequestMapping(value = "/updateprofile", method = RequestMethod.POST)
public String updateProfile(@RequestBody Customer customer) {

String s = "update customer set cemail= ?, cpassword= ?, cname= ?, cphone=

?, caddressno= ?, carea= ?, ccity= ?, cstate= ?, cpincode= ? where cid=(+

customer.getId() + "')";

System.out.println("s = " + customer.getEmail());

System.out.println("s = " + customer.getPassword());

99
E-Marketplace

‘rfi IT™

i | t||| INCUBATION
BUI/LD “ELL
CLUB resea rach ‘

System.out.println("s = " + customer.getName());
System.out.println("s = " + customer.getPhone());
System.out.println("s = " + customer.getAddressno());
System.out.println("s = " + customer.getArea());
System.out.println("s = " + customer.getCity());
System.out.println("s = " + customer.getState());
System.out.println("s = " + customer.getPincode());

System.out.println("s =

1
+

s);

int a = jdbc.update(s, customer.getEmail(), customer.getPassword(),
customer.getName(), customer.getPhone(), customer.getAddressno(),
customer.getArea(), customer.getCity(), customer.getState(),

customer.getPincode());

System.out.println("a = " + a);
if (a ==1) {
return "Updated Successfully";

} else {

return "Updated Failure";

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/updateprofile™) annotation sets the base path to the resource
endpoints in the controller as /updateprofile.

100
E-Marketplace

H 1™
BYD reseanel |
pa

CtUB

@RequestMapping (method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send details of a customer.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/updateprofile” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the updateProfile method.

Inside updateProfile method is where you create the query to update customer details in the
customer table.

The update method provided by JdbcTemplate can be used for insert, update, and delete
operations.

The SQL string is used to update the customer details by ID and pass the string to the update method
of JdbcTemplate followed by object arguments of type string which are the email, password, name,
phone, address no, state, city, area, and pin code. Note that the ID is only used to find the customer
to be updated but the ID itself is not updated.

13. List Order
This method is used to display history of orders.
In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.
@CrossOrigin(origins = "*")
@RequestMapping(value = "/customerorder", method = RequestMethod.POST)

public JSONObject customerOrder(@RequestBody Order order) {

String s = "select distinct osrefid AS orderrefid, oscid AS customerid,
oscustomername AS customername, oscustomeremail AS customeremail, oscustomerphone
AS customerphoneno, oscustomeraddressno AS customeraddressno, oscustomerarea AS
customerarea, oscustomercity AS customercity, oscustomerstate AS customerstate,
oscustomerpincode AS customerpincode, ostotalprice AS totalprice,

osordereddatetime AS ordereddatetime from ordersummary where oscid=(+

order.getCustomerid() + "') order by osrefid";

System.out.println("s = " + s);

101
E-Marketplace

| tm INCILIJE/'\\/IT\ON

H
U!LD resea rCh CELL
Pa

CtUB

List<Order> orderidlList = jdbc.query(s, new

BeanPropertyRowMapper(Order.class

))s

System.out.println("orderidList = " + orderidList.isEmpty());

JSONArray orderArr = new JSONArray();

JSONObject orderObj = new JSONObject();

if (lorderidList.isEmpty()) {

for (Order orObj : orderidList) {

JSONObject orderDetObj = new JSONObject();
orderDetObj.put("orderrefid"”, orObj.getOrderrefid());
orderDetObj.put("customerid”, orObj.getCustomerid());
orderDetObj.put("customername", orObj.getCustomername());
orderDetObj.put("customeremail™, orObj.getCustomeremail());

orderDetObj.put("customerphoneno", orObj.getCustomerphoneno());

orderDetObj.put("customeraddressno”,

orObj.getCustomeraddressno());
orderDetObj.put("customerarea", orObj.getCustomerarea());
orderDetObj.put("customercity", orObj.getCustomercity());
orderDetObj.put("customerstate”, orObj.getCustomerstate());
orderDetObj.put("customerpincode"”, orObj.getCustomerpincode());

orderDetObj.put("totalprice"”, orObj.getTotalprice());

102
E-Marketplace

fen, (o

H
UILD INCU:BE/L\[\ON
CLUB researacrrlm(C

orderDetObj.put("ordereddatetime"”, orObj.getOrdereddatetime());

String t = "select osproductname AS productname, osproductprice AS
productprice, osproductimage AS productimage, osproductquantity AS

productquantity, osproductprice AS productprice, osproductdescription AS

productdescription from ordersummary where oscid= '" + orObj.getCustomerid() + "'
AND osrefid= '" + orObj.getOrderrefid() + "'";
System.out.println("t = " + t);

List<Orderproducts> productlist = jdbc.query(t, new

BeanPropertyRowMapper (Orderproducts.class

))s
System.out.println("productlist = " + productlist.isEmpty());
System.out.println("productlist = " + productlist);

JSONArray pdlistArr = new JSONArray();
if (!productlist.isEmpty()) {
for (Orderproducts pdlist : productlist) {
JSONObject pdlisObj = new JSONObject();
pdlisObj.put("productname"”, pdlist.getProductname());

pdlisObj.put("productquantity”,

pdlist.getProductquantity());
pdlisObj.put("productprice”, pdlist.getProductprice());

pdlisObj.put("productimage"”, pdlist.getProductimage());

103
E-Marketplace

H | t [NCILIJE/'\\AT\ON
BUI/LD m
CLUuB resel%racrﬁ]((

pdlisObj.put("productdescription”,

pdlist.getProductdescription());

pdlistArr.add(pdlisObj);

orderDetObj.put("pdlist", pdlistArr);

orderArr.add(orderDetObj);

orderObj.put("orderdetails", orderArr);

return orderObj;

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/customerorder") annotation sets the base path to the resource
endpoints in the controller as /customerorder.

@RequestMapping (method = RequestMethod.POST is used to map HTTP POST request to the
mapped controller methods. We used it to send customer details, order details, and product details.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/customerorder” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the customerOrder method.

Inside order method is where you create the query to return customer details, product details and
order details as list based on customer ID from the ordersummary table.

The SQL s string contains a query to select the customer details, product details and order details by
customer ID from the ordersummary table and if your SQL query is going to return a List of objects
instead of just one object then you need to use the query () method of JdbcTempalte. These

104
E-Marketplace

| tm INCIUIEXIT\ON

H
U!LD resea rCh CELL
Pa

CtUB

methods provide to convert the result to a custom object. For instance, the simplest way to query
and handle results is via the query (String, RowMapper) method. This method uses RowMapper to
map the returned row to an object.

14. List Products
This method is used to display products.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController. java file and write the following code.

@CrossOrigin(origins = "*"
@RequestMapping(value = "/product", method = RequestMethod.POST)
public JSONObject product(@RequestBody Product product) {

String s = "select procategory AS category, proname AS name,
prodescription AS description, proprice AS price, proimage AS image,
proinitialquantity AS initialquantity, proquantity AS quantity, proid AS id from

product where procategory=CAST('" + product.getCategory() + "' AS VARCHAR)";

System.out.println("select procategory AS category, proname AS name,
prodescription AS description, proprice AS price, proimage AS image,
proinitialquantity AS initialquantity, proquantity AS quantity, proid AS id from

product where procategory=CAST('" + product.getCategory() + "' AS VARCHAR)");

List<Product> mrlist = jdbc.query(s, new

BeanPropertyRowMapper(Product.class

))s

System.out.println("mrlist = " + mrlist);
JSONObject json = new JSONObject();
json.put("Productdetails”, mrlist);

if (!'mrlist.isEmpty()) {

105
E-Marketplace

CtUB

.IrH HTM
BYD PRI, 1o
a

json.put("Productdetails"”, mrlist);

System.out.println("json = " + json);

return json;

return json;

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/product") annotation sets the base path to the resource endpoints in the
controller as /product.

@RequestMapping (method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to return all the products.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/product” URL with a Post JSON body, the HttpMessageConverters converts the
JSON request body into a Post object and passes it to the product method.

Inside product method is where you create the query to return products based on category
from the product table.

The SQL string contains a query to select the product details by category from the product
table and if your SQL query is going to return a List of objects instead of just one object
then you need to use the query () method of JdbcTempalte. These methods provide to
convert the result to a custom object. For instance, the simplest way to query and handle
results is via the query (String, RowMapper) method. This method uses RowMapper to map
the returned row to an object.

15. Order checkout
This method is used to display order summary.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

106
E-Marketplace

lrfi IT™

b | t||| INCUBATION
BUI/LD SELL
CLUB resea rach ‘

@CrossOrigin(origins = "*")

g g
@RequestMapping(value = "/ordersummary", method = RequestMethod.POST)
public String insertOrder(@RequestBody List<Order> odlist) {

String maxid = "select coalesce(max(osrefid),@) AS refid from

ordersummary";

int maxrefid = jdbc.queryForObject(maxid, Integer.class);

if (lodlist.isEmpty()) {
for (Orderproducts odlistl : odlist.get(@).getProductlist()) {
int quantity = Integer.parselnt(odlistl.getProductquantity());

String s = "select proid AS id, proname AS name, proimage AS
image, prodescription AS description, proprice AS price, procategory AS category,
proquantity AS quantity, proinitialquantity AS intialquantity from product where

proid = " + Integer.parseInt(odlistl.getProductid()) + "";

List<Product> mrlist = jdbc.query(s, new

BeanPropertyRowMapper (Product.class));

System.out.println("totalquantity = " + mrlist);
for (int i = @; i < mrlist.size(); i++) {

int totalquantity =

Integer.parseInt(mrlist.get(i).getQuantity());
if (quantity > totalquantity) {

return "Some Products are Out of Stock";

107
E-Marketplace

‘rfi IT™

i | t||| INCUBATION
BUI/LD SELL
CLUB research | ¢

String s = "insert into
ordersummary(osproductname,osproductprice,osproductquantity,osproductimage,ostotal
price,osordereddatetime,ospid,oscid,oscustomername,oscustomeremail,oscustomerphone
,oscustomeraddressno,oscustomerarea,oscustomercity,oscustomerstate,oscustomerpinco

de,osrefid)"
+ "values(?,?,?,2,?,2,?,2,2,?,2,?,2,?,2,?,2)";
List<Object[]> dataObjList = new ArraylList<>();
if (lodlist.isEmpty()) {
Date d = new Date();

SimpleDateFormat formatter = new SimpleDateFormat("dd MMMM yyyy

HH:mm:ss z");
String strDate = formatter.format(d);
String id = odlist.get(@).getCustomerid();
String totalprice = odlist.get(0@).getTotalprice();

String name = odlist.get(0).getCustomername();

String email = odlist.get(0).getCustomeremail();

String phone = odlist.get(@).getCustomerphoneno();

108
E-Marketplace

“I'H
BU/LD
CLUB

String

String area

String city

| tm INCIUIEXIT\ON
research \ ¢
pa

address = odlist.get(0).getCustomeraddressno();

odlist.get(0).getCustomerarea();

odlist.get(0).getCustomercity();

String state = odlist.get(@).getCustomerstate();

String

pincode = odlist.get(@).getCustomerpincode();

for (Orderproducts odlistl : odlist.get(@).getProductlist()) {

E-Marketplace

Object[] dataObjArr = new Object[17];

dataObjArr[0]

dataObjArr[1]

dataObjArr[2]

dataObjArr[3]

dataObjArr[4]

dataObjArr([5]

dataObjArr[6]

dataObjArr[7]

dataObjArr[8]

dataObjArr[9]

dataObjArr[10]

dataObjArr[11]

dataObjArr[12]

odlistl.getProductname();

odlistl.getProductprice();

odlistl.getProductquantity();

odlistl.getProductimage();

totalprice;

strDate;

Integer.parselnt(odlistl.getProductid());

Integer.parselnt(id);

name;

email;

phone;

address;

area;

109

| tm INCIUIEXIT\ON

H
U!LD resea rCh CELL
Pa

CtUB

dataObjArr[13] = city;

dataObjArr[14] = state;

dataObjArr[15] = pincode;

dataObjArr[16] = maxrefid + 1;

System.out.println("dataObjArr = " + Arrays.toString(dataObjArr));

dataObjList.add(dataObjArr);

System.out.println("dataObjList = " + dataObjList);

int[] a = jdbc.batchUpdate(s, dataObjList);

System.out.println("a = " + Arrays.toString(a));

System.out.println("a.length = " + a.length);

if (a.length >= 1) {
String t = "";

for (Orderproducts odlistl : odlist.get(@).getProductlist()) {

t += "update product set proquantity = (CAST(proquantity AS
INTEGER)-" + odlistl.getProductquantity() + ") where proid = (" +

odlistl.getProductid() + ");";

110
E-Marketplace

| tm INCIUIEXIT\ON

H
U!LD resea rCh CELL
Pa

CtUB

System.out.println("t = " + t);
jdbc.update(t);
String htmlCnt = sendMail(dataObjList);

return "Inserted Successfully";

} else {

return "Inserted failure";

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/ordersummary") annotation sets the base path to the resource endpoints
in the controller as /ordersummary.

@RequestMapping (method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send order details, product details and customer details.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/ordersummary” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the insertOrder method.

Inside order method is where you create the query to insert customer details, product details in the
ordersummary table and update product quantity in the product table.

The update method provided by JdbcTemplate can be used for insert, update, and delete
operations.

The SQL string “s” is used to perform a single insert operation. Here '?' means it acts as the
parameter which we need to pass while executing the query. Now to execute the query, we have
used the JdbcTemplate update() method, which takes the query as an argument, and other than the
query there are 4 values that correspond to 4 '?' respectively.

The SQL string “t” is used to update the product quantity by ID and pass the string to the update
method of JdbcTemplate. Note that the ID is only used to find the customer to be updated but the ID

111
E-Marketplace

‘rfi IT™

i | t||| INCUBATION
BUI/LD SELL
CLUB resea rach ‘

itself is not updated.

16. Generate Invoice & send via email
This method is used to send invoice via Gmail.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController. java file and write the following code.

@CrossOrigin(origins = "*")

@RequestMapping(value = "/sendmail", method = RequestMethod.POST)

public String sendMail(List<Object[]> dataObjList) {

// Recipient's email ID needs to be mentioned.

String to = "";

String OrderId = "";

String OrderedDateTime = 5

String Customername = g

String Customernumber = 5

String Customeraddress = 5

String Totalprice = 5

// Sender's email ID needs to be mentioned

String from = "indigrainmarketplace@gmail.com";

final String username = "indigrainmarketplace@gmail.com";

112

E-Marketplace

‘rfi IT™

i | t||| INCUBATION
BUI/LD SELL
CLUB resea rach ‘

final String password = "qgcilfhiyxhviqvt";

String HtmLFinal = "";

String HtmlCntTableRow = "";

for (int i = @; i < dataObjList.size(); i++) {

int sNo = 1 + 1;

Object[] s = dataObjList.get(i);

System.out.println("Object = " + s[@]);
System.out.println("Object = " + s[1]);
System.out.println("Object = " + s[2]);

Totalprice = s[4].toString();
OrderedDateTime = s[5].toString();
to = s[9].toString();

Customername = s[8].toString();
Customernumber = s[10].toString();

Customeraddress = s[11] + "," + s[12] + "," + s[13] + "," + s[14] +

"," + s[15].toString();

OrderId = s[16].toString();

113
E-Marketplace

lrfi IT™

b | t||| INCUBATION
BUI/LD SELL
CLUB resea rach ‘

HtmlCntTableRow += "<tr><td style='border: 1lpx solid #25a7e7; border-

collapse: collapse; text-align: center;'>" + sNo + "</td><td style='border: 1px

solid #25a7e7; border-collapse: collapse;'>" + s[0] + "</td><td style="border: 1px
solid #25a7e7; border-collapse: collapse; text-align: right;'>" + s[2] + "</td><td
style='border: 1px solid #25a7e7; border-collapse: collapse; text-align: right;'>"

+ s[1] + "₹</td></tr><tr>";

String htmlCntl = "<html>"
+ "<head>"
+ "</head>"
+ "<body>"

+ "<hl style='color: #25a7e7; text-align:
center; '>Invoice</hl><div><table style="width:
100%' ><tr><td><table><tr><td>Bill To:</td></tr><tr><td>Order ID: " +
OrderId + "</td></tr><tr><td>Ordered Date & Time: " + OrderedDateTime +

"</td></tr><tr><td>Customer Name: + Customername + "</td></tr><tr><td>Contact

Number: " + Customernumber + "</td></tr><tr><td>Address: + Customeraddress +
"</td></tr><tr><td>Email ID: " + to + "</td></tr><tr><th></tr></table></td><td
align="right'><img width="'60"
src=\"https://1h3.googleusercontent.com/PmbcUFjN8f9K8 5fR-6M-m8K-
uHjNgeEI69X_arC2kVkqQcleDzd5bhhVHI3gv5mX3Qyc@OhZYECU_Vpx-CuHYr3Hdebey5t01Q3stD-
04q8ge7uynwkFcDQWhbhhOKxZ4dnluJwsGaGUsVXFIFzBXGjvBgV_6yscWIdphFjdCCqFCxa3QWtP3wzll
6pk548FN55wWPFjEirszVgstMDx114Qin7VeYotLaikRfDMjiApgm31ifCFGymeWMAKvZaKrC2Km8SMGMhpS
XRS9yi_zvguEfxTavCKL10EbFi2HbbGdBmkaoc9wjuAU7ZamOUu-FsN6prMCNVVdORzOPaX-

pH1YJEHco3ssQ_LsHRG5HC5K@90ayzWD5KALIINY-d1t1IB6ny50VQha778ZxT7Uz -

SLZcXG4W11u8iquzLb2ISmvp44RyiPGfuT2fDLGYbYG2AP67cH9Azhq3P_6biCckbzJLt9Mo-

114
E-Marketplace

| tm INCILIJE/'\\/IT\ON

H
U!LD resea rCh CELL
Pa

CtUB

61yygpilidegONiIqoT1E04N8ytEI2-
tFbEaRBfjQKYnWOeAmGh20Y7j3wLYWYENIYkUiUKmnp5AJzkd5nuEInlddRyowULr3ducnonywGSDkuHQgQ
ofgUetupWlLa7B9sWxUSgdEbSCP8VXxT9jKo_Nx13pdaiydZawcqW7tidFkpopf3AoFDUkUfsWKaX4Wmh7g
HUfrd6V8uDKw58ulDlaDsbCfvmvFkq3gkIndy OSW_dHiSF5fP3IPB_RBY9bJQWwsuJwvoaf-
OCUIf2h5URUSSLkh7e=w285-h358-no?authuser=0\" />
Indigrain</td></tr></table></div>
<table style='width: 100%; border:
1px solid #25a7e7; border-collapse: collapse;'><tr><td style='border: 1px solid
#25a7e7; border-collapse: collapse; background-color: #25a7e7; color: white; text-
align: center;'>Item #</td><td style='border: 1px solid #25a7e7; border-collapse:
collapse; background-color: #25a7e7; color: white; text-align: center;'>Product
Name</td><td style='border: 1px solid #25a7e7; border-collapse: collapse;
background-color: #25a7e7; color: white; text-align: center;'>Quantity</td><td
style='border: 1px solid #25a7e7; border-collapse: collapse; background-color:

#25a7e7; color: white; text-align: center;'>Total Price</td></tr>";

String htmlCnt2 = "<tr><td colspan=\"3\" style='border: 1px solid #25a7e7;
border-collapse: collapse; text-align: right;'>Bill Amount</td><td

style="text-align: right;'>" + Totalprice + "₹</td></tr></table>"
+ "</body>"
+ "</html>";
HtmLFinal = htmlCntl + HtmlCntTableRow + htmlCnt2;
Properties prop = new Properties();
prop.put("mail.smtp.host", "smtp.gmail.com");
prop.put("mail.smtp.port", "465");

prop.put("mail.smtp.auth", "true");

115
E-Marketplace

“I'H
BU/LD
CLUB

| tm INCIUIEXIT\ON
research \ ¢
pa

prop.put("mail.smtp.socketFactory.port", "465");

prop.put("mail.smtp.socketFactory.class",

"javax.net.ssl.SSLSocketFactory");

Session session = Session.getInstance(prop,

})s

new javax.mail.Authenticator() {

@Override

protected PasswordAuthentication getPasswordAuthentication() {

return new PasswordAuthentication(username, password);

try {

// Create a default MimeMessage object.

Message message = new MimeMessage(session);

// Set From: header field of the header.

message.setFrom(new InternetAddress(from));

// Set To: header field of the header.

message.setRecipients(Message.RecipientType.TO,

116

E-Marketplace

H HTM
BYD PRI, 1o
pa

CtUB

InternetAddress.parse(to));

// Set Subject: header field

message.setSubject("Invoice");

// Send the actual HTML message, as big as you like

message.setContent(HtmLFinal, "text/html");

// Send message
Transport.send(message);

System.out.println("Sent message successfully....");

} catch (MessagingException e) {

throw new RuntimeException(e);

return "Invoice Generated";

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping ("/sendmail™) annotation sets the base path to the resource endpoints in the
controller as /sendmail.

@RequestMapping (method = RequestMethod.POST is used to map HTTP POST request to the

117
E-Marketplace

‘rfi IT™

i | t||| INCUBATION
BUI/LD SELL
CLUB researacrfl1((

mapped controller methods. We used it to send invoice via mail to customer.

Configure pom.xml.
Open pom.xm1 file

For handling the web-request and doing CRUD operations with PostgreSQL database, we

need the supporting of 3 Spring Boot dependencies: |spring-boot-starter-web|| spring-|
boot-starter-data-jdbc

r

postgresqldb and [spring-boot-starter-mail

Configure Spring Data source.

application. Properties|is used to add the Spring Boot application's configurations such
as: database configuration (PostgreSQL), server configuration.

In the Projects window, Inside project file > other sources > src/main/resources > default
package. Open application. properties file.

Since we're using PostgreSQL as our database, we need to configure the database URL,
username, and password so that Spring can establish a connection with the database on
startup.

spring.jpa.hibernate.ddl-auto=none
spring.datasource.url=jdbc:postgresql://localhost:5432/postgres
spring.datasource.username=postgres
spring.datasource.password=chonar@l3
spring.mvc.hiddenmethod.filter.enabled=true

spring.datasource.hikari.maximum-pool-size=2

Run the Spring Boot Project file.

Right-click on the project file and click on “Clean and Build”.
Installing Resin

ik Go to link. Click on Download for Resin 4.0
2. Unzip resin-4.0.x.zip

3. Define the environment variable RESIN_HOME to the location of Resin, for

118
E-Marketplace

https://caucho.com/products/resin/download/gpl

H
BUI/LD

| trT]r] IN%gQ%ON

example C:\Users\RP\Downloads\resin

4, Follow the similar process like setting Environment Variables in Java to set
RESIN_HOME

5. Execute resin.exe or run-in command prompt

resin/bin ./start.bat;
tail -f ../log/jvm-app-0.log;

Note: The resin server listens at port 8080 in the default configuration.
To fix 8080 ports already in use

Step 1: Open command prompt as administrator and find the process id that is using
the port 8080.

netstat -ano | findstr 8080

Step 2: Kill the process using process id in above result.
taskkill /F /pid 1088

Deploying war file in the resin.

Go to spring boot project folder -> inside target folder you will find emarker.war file

Copy the .war file (E.g.: emarket.war) -> inside resin folder -> webapps folder
Start the resin server

Execute resin.exe

or run-in command prompt

resin/bin ./start.bat;
tail -f ../log/jvm-app-90.log;

4. Your .war file will be extracted automatically to a folder that has the same name
(without extension) (E.g.: webapp)

119
E-Marketplace

|'|'H IT™

i | tl N JINCUBATION
BUI/LD ELL
CLUB resea rach ¢

Creating a database for E-marketplace in PostgreSQL.

1. Create a e market database and Create merchant, customer, category,
product, and order summary table, populate the table with data, retrieve and store
data for future use, or delete if needed

2. Database Design

| customer v "] category v] product v

cd BIGINT catid BIGINT proid BIGINT

VARCHAR(45
cname (45) proname VARCHAR (45)

catcategoryname VARCHAR(45)
cemail VARCHAR(45) catcategoryimage VARCHAR(45)
cphone VARCHAR({45) >

prodescription VARCHAR(45)

— — — — | procategory V ARCHAR (45)

cpassword V ARCHAR(45) proimage VARCHAR(45)

|
|
caddressno VARCHAR(45) |] ordersummary v | N
| " | proprice
carea VARCHAR(45) | osid BIGINT | proquantity INT
ceity VARCHAR(45) I osproductname VARCHAR(45) | <
cstate VARCHAR(45) | osproductprice INT I
cpincode V ARCHAR({45) I osproductquantity INT |
3 | osproductim age VARCHAR(45) I
I ostotalprice INT |
| osordereddatetime VARCHAR(45) I
| oscustomername V ARCHAR{45) |
_] merchant v | |
| oscustomerem ail VARCHAR{45) |
mid BIGINT [. —

oscustomerphone Y ARCHAR(45)
oscustomeraddressno VARCHAR(45)

mname VARCHAR(45)

mphone VARCHAR(45)
oscustomerarea VARCHAR(45)

oscustomercity VARCHAR{45)

memail VARCH AR (45)
mpassword VARCHAR(45)

oscustomerstate VARCHAR(45)
magstno YV ARCHAR(45)

< oscustomerpincod e VARCH AR (45)
osrefid BIGINT
@ customer_cid BIGINT

@ product_proid BIGINT

3. Downloading PostgreSQL Installer for Windows

Go to link. Download PostgreSQL

4. Installing the PostgreSQL installer

After downloading the installer double click on it and follow the below steps:

120
E-Marketplace

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

H tm INCIL:B;A\TION
BU!LD resea rch CELL
.CLUB park

E‘ Setup - O X
Packaged by:
DB T
POSTGRES Welcome to the PostgreS0L Setup Wizard.

PostgreSQL

< Back Next> ||| Cancel

Step 1: Click the Next button.

Step 2: Choose the installation folder, where you want PostgreSQL to be installed,
and click on Next.

| Setup — O b

Installation Directory ;I

Flease specify the directory where PostgreSQL wil be installed.

Installation Directory |C:".Prograrrl Files\PostgreSQLY11 | | re | o

InstallBuilder

<Back | Next » | cancel |

2T
E-Marketplace

CELL

BU'}'ED "t' 1
researc
.CLUB Park

IIT™
h INCUBATION

Step 3: Select the components as per your requirement to install and click the Next
button.

" setup — | s

Select Components #

Select the components you want to install; dear the components you do not want to install. Click Mext when
you are ready to continue.

PostgreSQL Server Stack Builder may be used to download and install
paiAdmin 4 additional tools, drivers and applications to
W Stack Builder complement your PostgreSQL installation

Command Line Tools

InstallBuilder

< Back Mext = Cancel
Step 4: Select the database directory where you want to store the data and click on

Next.

" setup — (| >

Data Directory *

Please select a directory under which to store your data.

Data Directory C:YProgram Files'\PostoresQLY11\data| re

InstallBuilder
= Back Mext = Cancel

122
E-Marketplace

IIT™

H | tl N JINCUBATION
BUI/LD ELL
CLUuB rese%racrﬁ]()

Step 5: Set the password for the database superuser (Postgres)

B Setup — (| >

Password »

Please provide a password for the database superuser (postares).

Password | wwwssss

Retype passwaord

InstallBuilder
= Badk Mext = Cancel

Step 6: Set the port for PostgreSQL. Make sure that no other applications are using
this port. If unsure leave it to its default (5432) and click on Next.

B Setup — O >

- =N

Please select the port number the server should listen on.

Part | 5432

InstallBuilder
< Back Mext = Cancel

123
E-Marketplace

IIT™

BUI}ILD | t INC&BEAC[ION
CLUB

Step 7: Choose the default locale used by the database and click the Next button.

= Setup — O =

Advanced Options »

Select the locale to be used by the new database duster,

Locale | [Default locale] o
InstallBuilder
< Back Cancel
Step 8: Click the Next button to start the installation.
= Setup — O >

Ready to Install »

Setup is now ready to begin installing PostgreSOL on your computer,

InstallBuilder

= Back i Mext> i Cancel

124
E-Marketplace

IT™
INCUBATION
CELL

BUILD resegmh
gCruB park

Wait for the installation to complete, it might take a few minutes.

Setup — O >

i &

Please wait while Setup installs PostgreSQL on your computer.,

Installing
Unpacking C:YProgram [...]\doc\postgresgl\himl\catalog-pg-sedabel . hitml
InstallBuilder

ok o>

Step 9: Click the Finish button to complete the PostgreSQL installation.

setup — O >
Packaged by:
E m‘ Completing the PostgreSQL Setup Wizard
POSTGRES Setup has finished installing PostgreSOL on your computer,

PostgreSQL

<oac carecel

|4
E-Marketplace

“rHE ’ -

| tl | | INCUBATION
BU/LD research

CLuB park

CELL

4. When you install PostgreSQL, pgAdmin is installed. Start pgAdmin from your
start menu.

5. Create Server

Go to the “Dashboard” tab. In the “Quick Link” section, click “Add New Server” to add
a new connection.

00 pgAdmin 4

File v Object v Tools Help ~

A Browser @ Dashboard %€ Properties B SQL |l Statistics) Dependencies {3 Dependents

0 B Servers
Welcome

pgAdmin,,,
Management Tools for PostgreSQL

Feature rich | Maximises PostgreSQL | Open Source

pgAdmin is an open source administration and tool for the F QL database. The tools include a graphical administration
interface, an SQL query tool, a procedural code debugger and much more. The tool is designed to answer the needs of developers, DBAs and
system administrators alike.

=
== Lo
4
Add New Server Configure pgAdmin
Getting Started
020
PostgreSQL Documentation pgAdmin Website Planet PostgreSQL Community Support

6. In the General tab, enter the name for this server.

7. Select the “Connection” tab in the “Create-Server’” window.

126
E-Marketplace

https://docs.bitnami.com/images/img/components/postgresql/config-pgadmin-1.png

I tm IN UEXIH N
BULD research | <
ark

General Connection SSL S5H Tunnel Advanced

Host localhost
name/address

Port 5432

Maintenance postgres
database

Username postgres 0

Password = | sssssssss E

Save (]
password?

Raole

Service

1 ? Save ¥ Reset

In the default PostgreSQL setup, the administrator user is postgres with an empty
password. In the connection tab be sure to have the host set to localhost.
Click Save afterwards.

8. Create New User

First, connect to the database by double-clicking on the instance name you created
above.

Right click on Login/Group Roles, select Create and click on Login/Group Roles...
for creating new user.

127
E-Marketplace

CELL

BU'}'ED "t' 1
researc
,CLUB Park

IIT™
h INCUBATION

The following Create dialog box will appear. Type ‘emarket in Name field as user’s
name and click on Definition tab.

EEAdmin Filev Objectv Toolge taloe

% Create - Login/Group Role > X

o | Browser 8 B w Q? & o9 P ‘ opsigres/postg S postgres/tr < > |
{ N General Definition Privileges Membership Parameters Security SQL

> {E) Trigger FUNCHioNS e ® B|v %% ov | &

> [Types

Name emarket i
> Views

> "¥)Subscriptions Comments
> =icdevmgmivl
> =icdevpbi
> =icprod
> = postgres
> =¥ prodmgmtv
> = ranchodb
> =*twinfooddb
> &h Login/Group Roles
> [Tablespaces
~ (¥ emarket
~ £ Databases (1)
~ = postgres
> B Casts
> 4P catalogs
> [T Event Triggers
>) Extensions
> = Foreign Data Wrappers
» 0 languages i ? X Cancel €3 Reset
> @ Publications
v 99 Schemas (1)
v & public

Page460f77 3305words [English (Indial T Accessibility: Investigate T Focus -+ 150%

Type login password for the user admin and click on Privileges tab. If you want to
create user for limited time, then set the Account expires data and time value.

128
E-Marketplace

IIT™
BU/LD INCUBATION

Create - Login/Group Role x
Browser S B w Q2?2 = ©d P ‘ ostgres/postg $postgres/r < > |/
@) ™ General Definition Privileges Membership Parameters Security SQL I
> {5} Trigger Functions — | v | s |leav| &

Und 2 fTypes Password [= .

L 3 Views
> ") Subscriptions Account expires No Expiry
=icdevmgmtvl

.,
i3

Please note that if you leave this field blank, then password will never expire.

v

=icdevpbi
=icprod Connection limit -1

= postares

v v

-

= prodmgmty1
= ranchadb
> Ztwinfooddb
> &b, Login/Group Roles
> [Tablespaces
v (¥ emarket

atabases (1)

-

v = postgres
> Bcasts
> ¥ catalogs
> [T} Event Triggers
>) Extensions
Foreign Data Wrappers

> ©Llanguages

> ¢ Publications

~ % schemas (1)
v & public

Paged80f77 330Swords [} English (india) T Accessibility: Investigate

-
N

7 X Cancel % Reset

[

I Foeus

To set all permissions to emarket user make all options to ‘Yes’. Click ‘Save’ button
to create the user.

File
~_Lalo v
£ Create - Login/Group Role x
ay Browser osigres/postg.. S postgres/p € > |
~4 T General Definition Privileges Membership Parameters Security SQL P
> &b Login/Group Roles — IR] v % (% av| &
Undi > [Tablespaces can login? v
L ~ (¥ emarket
£ Databases (1) Superuser? \
v = posigres
7 Yes
> @casts Create roles?
N » @ catalogs Create databases?
- > [T Event Triggers
- > fExtensions Update catalog? ‘
- = Foreign Data Wrappers
> £ Languages Inherit rights from the parent
i > @ Publications roles?
A ~ 49 Schemas (1)
| © & public Can initiate streaming
. icati 2
N > 21 Collations replication and backups’
] > %y Domains
o > [[3 FTS Configurations
i > [FTS Dictionaries
2 > AaFTS Parsers
7] > FTS Templates
M > [H Foreign Tables
i > {}Functions il ? X Cancel | | € Reset
- > Materialized Views
-
- > {(}Procedures
N \ anen -
~

I 9
Page 114 0f 121 15336words [} English (United States)

Create a table. T
T Accessibil westigate T Focus B ——F——+ 120

‘emarket user entry will be shown in Login/Group Roles section.

129
E-Marketplace

BU!LD m INCUE/';A\TION
CELL

EEAdmin

Browser % B2 Y= Q »>_ Dashboard Properties SQL Statistics Dependencies Dependents 8 postgres/postg.. § postgres/postg S postgres/r € > |

File~ Objectv Toolsv Helpv

icdevpbi

& &= Qv S (Qv &V E T v Y|[¥ nNimt v BPvi@e@ B | & X

icprod

p v
postgres L3¢

(0 (0 (p 0

prodmgrmityv1 Data Output Explain Messages Notifications
=*ranchadb =
> =twinfooddb
> &b Login/Group Roles
> Tablespaces
~ (¥ emarket
v = Databases (1)
> = postgres
~ £ Login/Group Roles (10)
2 emarket
5 pg_execute_server_program
& pg_monitor
2 pg_read_all_settings
& pg_read_all_stats
& pg_read_server_files
&5 pg_signal_backend

>
>
>
>
>

@ Nodata output. Execute a query to get output.

Query Editor Query History

£ pg_stat_scan_tables 1

da pg_write_server_files
£ postgres
> Tablespaces
> Efranchoprogram
> Etwinfood

[IT T = il [
Page490f 77 3305words [G English (India) & Accessibility: Investigate T Focus B ——#——+ 150%
3:56 AM

ENG

9. Create a table.

Left click on the Database section and select the required database, in this case the
name of database is postgres

EEAdmin Filev Objectv Toolsv Helpv
)
1) Browser § B T Q [>- Dashboard Properties SQL Statistics Dependencies Dependents x
v Erishi (6)
» =¥Build Club Database sessions W Total [l Active [l Idle Transactions per second [l Transactions [l Commits [l Rollbacks
Und 5 v
> EXEmarketplace 1 — i
L
> Hemarket
v (@ emarket
v = Databases (1)
v = postgres |
> [Hcasts
> @ Catalogs 0 _— o
> [Event Triggers
>) Extensions Tuples in M inserts [Updates [l Delete Tuples out M Fetched [Returned Block I/0 W Reads [Hits
> = Foreign Data Wrappers 1 1 1
> ©languages
> @ Publications
> & schemas
> ") Subscriptions
> & Login/Group Roles
> [Tablespaces 0 — 0 — 0 —
» E¥ranchoprogram
> twinfood Server activity
Sessions Locks Prepared Transactions Q search [
PID User Application Client Backend start State Waitevent Blocking PIDs
© B » 2396 postgres pgAdmin 4- DE:postgres o 2023-03-02 22:57:31IST active
[[|
Pagessores sisaworss [Englsh (naia) T Accessibilty: Investigate o Focus B -—4——+ 1

10. PostgreSQL- Database Selection

Now left click on the database and then select the Schemas section using the left
mouse button. In this case we left click on postgres

130
E-Marketplace

' Q- Properties SQL S

o

emarket

IIT™

INCUBATION
CELL

tatistics Dependencies Dependents

+ = Databases (1) Database sessions W Total [l Active [l 1dle Transactions per second [l Transactions [l commits [l Rollbacks
una ! v
v = postgres 1 3
L
> [ECasts
> & Catalogs 2
> [Event Triggers
>) Extensions 1
> = Foreign Data Wrappers
> ©languages 0 0
> @ Publications
v @ Schemas (1) Tuples in M inserts [l Updates [l Delete Tuples out M Fetched [l Returned Block I/0 [l Reads [Hits
v & public 1 1600 2
> £l Collations 1400 80
1200 I
> (& Domains 1000 50
> [} FTSs Configurations 800 zg
> [\ FTS Dictionaries 600 30
> AaFTS Parsers 400 20
200 10
> (LTS Templates 0 0 0
> [Foreign Tables
* {5 Functions Server activity
> [Materizlized Views -
> {(}Procedures Sessions Locks Prepared Transactions Q =
> 1.3Sequences
> [EjTables PID User Application Client Backend start State Waitevent Blocking PIDs
> {2 Trigger Functions
© B » 2396 posigres pgAdmin 4- DB:postgres 1 2023-03-02 22:57:31 1ST active
| i T eTIETTS | |
Page60of 64 8144words [} English (India) BB $% Accessibility: Investigate M Focus B -—&——+ 140%

I1.

menu.

PostgreSQL- Selecting Schemas
Now right click on the public section to select the Create option from the drop-down

@ <)
W} pgAdmin4 - o X
File m
Admi lev Object Tools™ Help
&) Browser 3 Y Q||>_ Dashboard Properties SQL Statistics Dependencies Dependents & postgres/postg. £ postgres/postg. & posigres/t < > &/
> = Foreign Data Wrappers slls g~ alalv svsg @y T~ noimt v HB(P|v & B %% e &
> ©ilanguages
und v
> @5 Publications
-
~ 4@ Schemas (1) Explain Messages Notifications
B v & public
n > BLC Create >
N ¢! @ No data output. Execute a query to get output
] » [ye Refresh
M > flF Delete/Drop 1 Editor Query History
2 > AaF Drop Cascade
M > EF cReATE soript
- > EF
- Backup.
N > BF
a » n Restore
] > {()F Grant wizard

Search Objects.

il PSQL Tool (Beta)
oo |
\ Properties

Subscriptions

> & Login/Group Roles

>

>
>
>

Tablespaces
> E'ranchoprogram
» Eftwinfood

Page590f62 8139words [English (india)

B % Accessibi

y: Investigate

B -—————+ 140%

ocus

12. PostgreSQL- Create Tab
Create a table named customer:

le

Type the following query in the Query editor panel.

CREATE TABLE IF NOT EXISTS public.customer

E-Marketplace

131

cid serial,

cname text COLLATE pg_catalog."default" NOT NULL,
cemail text COLLATE pg_catalog."default" NOT NULL,
cphone text COLLATE pg_catalog."default",

cpassword text COLLATE pg_catalog."default" NOT NULL,
caddressno text COLLATE pg_catalog."default",

carea text COLLATE pg_catalog."default",

ccity text COLLATE pg_catalog."default",

cstate text COLLATE pg_catalog."default",
cpincode text COLLATE pg_catalog."default",
CONSTRAINT cid PRIMARY KEY (cid),
CONSTRAINT unigemail UNIQUE (cemail),

CONSTRAINT unigmobile UNIQUE (cphone)

In the admin table “cid”, “cname”, “cemail”, “cphone”, “cpassword”, “caddressno”,
“carea”, “ccity”, “cstate”, and “cpincode” represents the name of the columns. INT
and TEXT are data types and NOT NULL defines the column constraint, NOT NULL
means no acceptance of NULL values in that column. Here, “cid” is defined as the
Primary Key Column. The primary key column is used for distinguishing a unique
row in a table. AUTO_INCREMENT to create a column whose value can be set
automatically from a simple counter. You can only use AUTO_INCREMENT on a
column with an integer type. The column must be a key, and there can only be one
AUTO_INCREMENT column in a table. UNIQUE to specify that all values in the
cstemail column must be distinct from each other. For UNIQUE indexes, you can
specify a name for the constraint, using the CONSTRAINT keyword. That name will

be used in error messages.
After entering query, select the Execute/Refresh icon from the toolbar.
13. Create a table named merchant:

Type the following query in the Query editor panel.

132
E-Marketplace

CREATE TABLE IF NOT EXISTS public.merchant

(

mid serial,

mname text COLLATE pg_catalog."default",

mphone text COLLATE pg_catalog."default",

memail text COLLATE pg_catalog."default" NOT NULL,
maddress text COLLATE pg_catalog."default",

mgstno text COLLATE pg_catalog."default",

mpassword text COLLATE pg_catalog."default" NOT NULL,

CONSTRAINT mid PRIMARY KEY (mid)

In the merchant table “mid”, “mname”, “mpassword”, “memail”, “maddress”,
“‘mgstno”, and “mpassword” represents the name of the columns. INT and TEXT are
data types and NOT NULL defines the column constraint, NOT NULL means no
acceptance of NULL values in that column. Here, “mid” is defined as the Primary Key
Column. The primary key column is used for distinguishing a unique row in a table.
AUTO_INCREMENT to create a column whose value can be set automatically from
a simple counter. You can only use AUTO_INCREMENT on a column with an integer
type. The column must be a key, and there can only be one AUTO_INCREMENT
column in a table.

After entering query, select the Execute/Refresh icon from the toolbar.

14. Create a table named category:
Type the following query in the Query editor panel.
CREATE TABLE IF NOT EXISTS public.category

(

catid serial,

catcategoryname text COLLATE pg_catalog."default" NOT NULL,

133
E-Marketplace

catcategoryimage text COLLATE pg_catalog."default" NOT NULL,

CONSTRAINT catid PRIMARY KEY (catid)

In the category table “catid”, “catcategoryname” and “catcategoryimage” represents
the name of the columns. INT and TEXT are data types and NOT NULL defines the
column constraint, NOT NULL means no acceptance of NULL values in that column.
Here, “mid” is defined as the Primary Key Column. The primary key column is used
for distinguishing a unique row in a table. AUTO_INCREMENT to create a column
whose value can be set automatically from a simple counter. You can only use
AUTO_INCREMENT on a column with an integer type. The column must be a key,
and there can only be one AUTO_INCREMENT column in a table.

After entering query, select the Execute/Refresh icon from the toolbar.

5 Create a table named product:

Type the following query in the Query editor panel.

CREATE TABLE IF NOT EXISTS public.product

(
proid serial,
proname text COLLATE pg_catalog."default” NOT NULL,
prodescription text COLLATE pg_catalog."default" NOT NULL,
procategory text COLLATE pg_catalog."default" NOT NULL,

proimage text COLLATE pg_catalog."default" NOT NULL,

proprice text COLLATE pg_catalog."default" NOT NULL,

proquantity text COLLATE pg_catalog."default" NOT NULL,
proinitialquantity text COLLATE pg_ catalog."default",

CONSTRAINT proid PRIMARY KEY (proid)

134
E-Marketplace

In the product table “proid”, “proname”, “prodescription”, “procategory”, “proimage”,
“proprice”, “proquantity”, and “proinitialquantity” represents the name of the columns.
INT and TEXT are data types and NOT NULL defines the column constraint, NOT
NULL means no acceptance of NULL values in that column. Here, “proid” is defined
as the Primary Key Column. The primary key column is used for distinguishing a
unique row in a table. AUTO_INCREMENT to create a column whose value can be
set automatically from a simple counter. You can only use AUTO_INCREMENT on a
column with an integer type. The column must be a key, and there can only be one
AUTO_INCREMENT column in a table.

After entering query, select the Execute/Refresh icon from the toolbar.

16. Create a table named ordersummary:
Type the following query in the Query editor panel.
CREATE TABLE IF NOT EXISTS public.ordersummary
(
oscid bigint,
osproductquantity text COLLATE pg_catalog."default",
osproductname text COLLATE pg_catalog."default",
osproductprice text COLLATE pg_catalog."default",
ostotalprice text COLLATE pg_catalog."default",
osordereddatetime text COLLATE pg_catalog."default",
ospid bigint,
osid serial,
oscustomername text COLLATE pg_catalog."default",

oscustomeremail text COLLATE pg_catalog."default",

oscustomerphone text COLLATE pg_catalog."default",

oscustomeraddressno text COLLATE pg_catalog."default",

oscustomerarea text COLLATE pg_catalog."default",

135
E-Marketplace

BUILD rese

oscustomercity text COLLATE pg_catalog."default",
oscustomerstate text COLLATE pg_catalog."default",
oscustomerpincode text COLLATE pg_catalog."default",
osproductimage text COLLATE pg_catalog."default",
osproductdescription text COLLATE pg_catalog."default",
osrefid bigint,

CONSTRAINT osid PRIMARY KEY (osid)

” 13 ” 13 EL 11

In the admin table “osid”, “ospid”,
“osproductprice”, “osproductlmage
“osordereddatetime”, “oscid”, “oscustomername”, “oscustomeremail”,
“oscustomerphone”, “oscustomeraddressno”, “oscustomerarea”, “oscustomercity,
“oscustomerstate”, “oscustomerpincode”, and “osrefid” represents the name of the
columns. INT, BIGINT, and TEXT are data types and NOT NULL defines the column
constraint, NOT NULL means no acceptance of NULL values in that column. Here,
“osid”, “oscid” are defined as the Primary Key Column. The primary key column is
used for distinguishing a unique row in a table. AUTO_INCREMENT to create a
column whose value can be set automatically from a simple counter. You can only
use AUTO_INCREMENT on a column with an integer type. The column must be a
key, and there can only be one AUTO_INCREMENT column in a table.

osproductname”, “osproductdescription”,

osproductquantity”, “ostotalprice”,

After entering query, select the Execute/Refresh icon from the toolbar.
17. Insert a record into the merchant table.
Type the following query in the Query editor panel.

INSERT INTO merchant (mname, mphone, memail, maddress, mgstno, mpassword)

VALUES (|nd|gra|n' '"1234567890', 'indigrain@gmail.com', 'chennai’, '9876543210',

The ‘merchant is an already created table. Now we are adding a new row of records
under the respective columns with the corresponding values: 'indigrain’,
'"1234567890', 'indigrain@gmail.com’, 'chennai’, '9876543210', 'indi@123".

After entering query, select the Execute/Refresh icon from the toolbar.

136
E-Marketplace

IIT™

H 1ltm
BUI/LD N
B researacrfl1(
Testing the backend with the mobile application.
Note: Make sure your computer and phone are on the same Wi-Fi network.

1. Change the api call URL from http://121.242.232.216:7070/emarket/ to
http://<Wifi ipaddress>:8080/emarket/

In flutter project file ->
e Inside lib/Screen/api/api.dart
¢ Inside lib/Screen/category_management/api_service.dart
e Inside lib/Screen/customerhome/ApiServiceProjectDetail.dart
e Inside lib/Screen/product_management/api_service.dart

e Inside lib/Screen/ordersummary/ordersummary.dart

Example: (http:// 192.168.68.27:8080/emarket/)

2 Start the resin server.
Execute resin.exe

or run-in command prompt

resin/bin ./start.bat;
tail -f ../log/jvm-app-90.log;

3. Perform functional tests and validate if all the functionalities work according
to requirements.

1. Merchant Login
1. Add, View, Remove Categories
2. Add, View, Edit, Remove Products
3. Check Incoming/New Orders

2. Customer Registration

137
E-Marketplace

http://121.242.232.216:7070/emarket/

“TH
BU/LD
CLUB

IIT™

| tm INCUBATION
research \ ¢
park

3. Customer Login

1.

2,

E-Marketplace

View Categories

View Products

. Add to Cart

a. Add/ Remove Items
b. Increase/ Decrease Quantity
c. Quantity Check
Update Profile, Address
Make payment using different payment modes.

Check history of orders

138

	Installing Flutter and Android Studio:
	1.System requirements:

	2.Get the Flutter SDK:
	3.Update your path.

	4.Run flutter doctor.
	5.Install Android Studio
	7.Set up the Android emulator.
	8.Agree to Android Licenses

	9.Install the Flutter and Dart plugins.
	Mac
	Linux or Windows

	10.Configure Android Studio for Flutter Development:
	11.Running the application:

