

1
E-Marketplace

Build an E-marketplace mobile application.

2
E-Marketplace

Introduction to the

course:

Building customer-facing e-marketplace application

from scratch using Flutter framework, Java, and the

Spring Boot environment to create a robust backend

supporting payments with Razor pay payment gateway.

What does this course

aim to achieve?

In this course, you’ll build a full-stack e-marketplace

application which require full-stack development,

involving a backend to handle users, inventory, and

payments, and a frontend for customers to view

products, manage their cart, and checkout using razor

pay. User profiles will also store order history.

What is being built in

this course

E-marketplace mobile application integrated with

Razor pay payment gateway.

How is it being tested 1 Install the generated .APK file onto an Android

device.

2 Open the postman REST client and test the APIs.

3 Make a test payment to verify the Razor pay

payment gateway integration

Course Prerequisites Basic knowledge of Dart language

Basic Java programming

3
E-Marketplace

Contents

Prerequisites

Components

Software

Building the frontend of E-marketplace mobile

application using Flutter framework.

- Installing Flutter and Android Studio

- Creating a responsive E-marketplace mobile application.

- Importing the Project

Building the backend of E-marketplace using Spring

Boot framework.

- Installing Java SE 13 (JDK)

- Installing Apache NetBeans IDE

- Importing the Project

- Installing Resin

- Deploying war file in the resin.

Creating a database for E-marketplace in PostgreSQL.

Testing the backend with the mobile application.

4
E-Marketplace

Prerequisites:

TOPIC LINK

Introduction to Flutter https://docs.flutter.dev/

Create a Flutter Project

from Scratch

Flutter Tutorial Part 1: Build a Flutter App From Scratch - DZone

Add to the app using the

Pub spec file

https://docs.flutter.dev/development/tools/pubspec/

Flutter Logo: https://www.geeksforgeeks.org/flutter-flutterlogo-widget/

Flutter Toaster https://pub.dev/packages/fluttertoast

Flutter Drawer https://docs.flutter.dev/cookbook/design/drawer

Shared preferences https://blog.logrocket.com/using-sharedpreferences-in-

flutter-to-store-data-locally/

Widgets https://docs.flutter.dev/development/ui/widgets-intro/

Container https://api.flutter.dev/flutter/widgets/Container-class.html

Row and Column https://www.geeksforgeeks.org/row-and-column-widgets-in-

flutter-with-example/

Expanded Widget https://api.flutter.dev/flutter/widgets/Expanded-class.html

Floating Action Button https://api.flutter.dev/flutter/material/FloatingActionButton-

class.html

List Tile Widgets https://api.flutter.dev/flutter/material/ListTile-class.html

Card Widget https://api.flutter.dev/flutter/material/Card-class.html

List view https://api.flutter.dev/flutter/widgets/ListView-class.html

Grid View https://api.flutter.dev/flutter/widgets/GridView-class.html

Custom Fonts https://docs.flutter.dev/cookbook/design/font

Material Icons https://docs.flutter.dev/development/ui/widgets/material

Making Responsive App https://docs.flutter.dev/release/breaking-changes/buttons

Stateful Widget
https://api.flutter.dev/flutter/widgets/StatefulWidget-

class.html

https://docs.flutter.dev/
https://dzone.com/articles/flutter-tutorial-part-1-build-a-flutter-app-from-s
https://docs.flutter.dev/development/tools/pubspec/
https://blog.logrocket.com/using-sharedpreferences-in-flutter-to-store-data-locally/
https://blog.logrocket.com/using-sharedpreferences-in-flutter-to-store-data-locally/
https://docs.flutter.dev/development/ui/widgets-intro/
https://api.flutter.dev/flutter/widgets/Container-class.html
https://www.geeksforgeeks.org/row-and-column-widgets-in-flutter-with-example/
https://www.geeksforgeeks.org/row-and-column-widgets-in-flutter-with-example/
https://api.flutter.dev/flutter/widgets/Expanded-class.html
https://api.flutter.dev/flutter/material/FloatingActionButton-class.html
https://api.flutter.dev/flutter/material/FloatingActionButton-class.html
https://api.flutter.dev/flutter/material/ListTile-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://docs.flutter.dev/development/ui/widgets/material

5
E-Marketplace

 Stateless Widget

https://api.flutter.dev/flutter/widgets/StatelessWidget-

class.html

Text Field

https://docs.flutter.dev/cookbook/forms/text-field-changes/

API
https://www.tutorialspoint.com/flutter/flutter_accessing_rest_

api.htm/

JSON https://docs.flutter.dev/development/data-and-backend/json/

https://blog.logrocket.com/how-parse-json-strings-flutter/

https://medium.com/flutter-community/flutter-part-4-fetch-

data-from-the-network-1b5949d84d44/

Cart Feature https://www.dbestech.com/tutorials/how-to-remove-an-item-

from-dart-list-flutter/

Components

Components Quantity

Window 10 / Linux 64-bit Pc or
Laptop

• RAM:
Min: 8GB

Recommended: 16GB

• Free Disk Space:
1 No

https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://docs.flutter.dev/cookbook/forms/text-field-changes/
https://www.tutorialspoint.com/flutter/flutter_accessing_rest_api.htm/
https://www.tutorialspoint.com/flutter/flutter_accessing_rest_api.htm/
https://docs.flutter.dev/development/data-and-backend/json/
https://blog.logrocket.com/how-parse-json-strings-flutter/
https://medium.com/flutter-community/flutter-part-4-fetch-data-from-the-network-1b5949d84d44/
https://medium.com/flutter-community/flutter-part-4-fetch-data-from-the-network-1b5949d84d44/
https://www.dbestech.com/tutorials/how-to-remove-an-item-from-dart-list-flutter/
https://www.dbestech.com/tutorials/how-to-remove-an-item-from-dart-list-flutter/

6
E-Marketplace

Min: 10GB

Recommended: 30GB

• Screen Resolution:
Min: 1280x800px

Recommended: 1920x1080px

Software

Software Download Link

Android

Studio IDE

and SDK

https://developer.android.com/studio

Flutter SDK

https://docs.flutter.dev/get-started/install

Java SE 13 https://www.oracle.com/java/technologies/javase/jdk13-

archive-downloads.html

Apache

NetBeans

https://netbeans.apache.org/download/index.html

Resin www.caucho.com/resin-4.0/admin/starting-resin.xtp

PostgreSQL https://www.postgresql.org/download/

https://developer.android.com/studio
https://docs.flutter.dev/get-started/install
https://www.oracle.com/java/technologies/javase/jdk13-archive-downloads.html
https://www.oracle.com/java/technologies/javase/jdk13-archive-downloads.html
https://netbeans.apache.org/download/index.html
https://www.caucho.com/resin-4.0/admin/starting-resin.xtp
https://www.postgresql.org/download/

7
E-Marketplace

Part- A Build the frontend of E-marketplace mobile application.

Building the frontend of E-marketplace mobile application using Flutter

framework.

Installing Flutter and Android Studio:

1.System requirements:
To install and run Flutter, your development environment must meet these

minimum requirements:

Operating Systems: Windows 7 SP1 or later (64-bit), x86-64 based.

 Disk Space: 1.64 GB (does not include disk space for IDE/tools).

Tools: Flutter depends on these tools being available in your environment.

Windows PowerShell 5.0or newer (this is pre-installed with Windows 10)

Git for Windows 2.x, with the Use Git from the Windows Command Prompt

option. If Git for Windows is already installed, make sure you can run git

commands from the command prompt or PowerShell.

2.Get the Flutter SDK:
1. Download the following installation bundle to get the latest stable

release of the
2. Flutter SDK:

https://storage.googleapis.com/flutter_infra_release/releases/stabl
e/windows/ flutter_windows_2.10.3-stable.zip

3. Extract the zip file and place the contained flutter in the desired installa-
tion location for the Flutter SDK (for example, C:\Users\<your-user-
name>\Documents).

4. If you don’t want to install a fixed version of the installation bundle, you
can skip steps 1 and 2. Instead, get the source code from the
https://github.com/flutter/flutter on GitHub, and change branches or
tags as needed. For example: git clone
https://github.com/flutter/flutter.git -b stable

You are now ready to run Flutter commands in the Flutter Console.

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-windows-powershell
https://git-scm.com/download/win
https://storage.googleapis.com/flutter_infra_release/releases/stable/windows/flutter_windows_2.10.3-stable.zip
https://storage.googleapis.com/flutter_infra_release/releases/stable/windows/flutter_windows_2.10.3-stable.zip
https://storage.googleapis.com/flutter_infra_release/releases/stable/windows/flutter_windows_2.10.3-stable.zip
https://github.com/flutter/flutter

8
E-Marketplace

3.Update your path.
If you wish to run Flutter commands in the regular Windows console, take

these steps to add Flutter to the PATH environment variable:

• From the Start search bar, enter ‘env’ and select Edit environment
variables for your account.

• Under User variables check if there is an entry called Path:
• If the entry exists, append the full path to flutter\bin using; as a separator

from existing values.
• If the entry doesn’t exist, create a new user variable named Path with the

full path to flutter\bin as its value.

You must close and reopen any existing console windows for these changes to
take effect.

4.Run flutter doctor.
From a console window that has the Flutter directory in the path (see
above), run the following command to see if there are any platform
dependencies you need to complete the setup:

C:\src\flutter>flutter doctor

This command checks your environment and displays a report of the status of
your Flutter installation. Check the output carefully for other software you
might need to install or further tasks to perform.

 For example:

[-] Android toolchain - develop for Android devices.
• Android SDK at D:\Android\sdk
✗ Android SDK is missing command line tools; download from

https://goo.gl/XxQghQ
• Try re-installing or updating your Android SDK,

visit https://docs.flutter.dev/setup/#android-setup for
detailed instructions.

The following sections describe how to perform these tasks and finish the
setup process. Once you have installed any missing dependencies, you can run
the flutter doctor command again to verify that you’ve set everything up
correctly.

9
E-Marketplace

5.Install Android Studio
1. Download and install Android studio.
2. Start Android Studio and go through the ‘Android Studio Setup Wiz-

ard’. This installs the latest Android SDK, Android SDK Command-line
Tools, and Android SDK Build-Tools, which are required by Flutter
when developing for Android.

3. Run flutter doctor to confirm that Flutter has located your installation of
Android Studio. If Flutter cannot locate it, run flutter config – android
https://developer.android.com/studio-studio-dir.

<directory> to set the directory that Android Studio is installed to.

6.Set up an Android device:

To prepare to run and test your Flutter app on an Android device, you need
an Android device running Android 4.1 (API level 16) or higher.

1. Enable Developer options and USB debugging on your device. De-
tailed instructions are available in the Android Documentation.

2. Windows-only: Install the Google USB driver.
3. Using a USB cable, plug your phone into your computer. If prompt-

ed on your device, authorize your computer to access your device.
4. In the terminal, run the flutter devices command to verify that Flut-

ter recognizes your connected Android device. By default, Flutter
uses the version of the Android SDK where your adb tool is based.
If you want Flutter to use a different installation of the Android
SDK, you must set the ANDROID_SDK_ROOT environment variable
to that installation directory.

7.Set up the Android emulator.
To prepare to run and test your Flutter app on the Android emulator, follow
these steps:

• Enable VM acceleration on your machine.
• Launch Android Studio, click the AVD Manager icon, and select Create

Virtual Device…
• In older versions of Android Studio, you should instead launch Android

Studio > Tools > Android > AVD Manager and select Create Virtual De-
vice…. (The Android submenu is only present when inside an Android
project.)

https://developer.android.com/studio

10
E-Marketplace

• If you do not have a project open, you can choose Configure > AVD Man-
ager and select Create Virtual Device…

• Choose a device definition and select Next.
• Select one or more system images for the Android versions you want to

emulate and select.
Next. An x86 or x86_64 image is recommended.

• Under Emulated Performance, select Hardware - GLES 2.0 to
enable hardware acceleration.

• Verify the AVD configuration is correct and

select Finish.

For details on the above steps, see Managing

AVDs.

• In Android Virtual Device Manager, click Run in the toolbar. The emu-
lator starts up and displays the default canvas for your selected OS
version and device.

8.Agree to Android Licenses
Before you can use Flutter, you must agree to the licenses of the Android SDK
platform. This step should be done after you have installed the tools listed above.

1. Make sure that you have a version of Java 8 installed and that your JA-
VA_HOME environment variable is set to the JDK’s folder.

Android Studio versions 2.2 and higher come with a JDK, so this should already
be done.

2. Open an elevated console window and run the following command begin.

3. signing licenses. flutter doctor –android-licenses.

4. Review the terms of each license carefully before agreeing to them.

5. Once you are done agreeing with licenses, run flutter doctor again to
confirm that you are ready to use Flutter.

9.Install the Flutter and Dart plugins.
The installation instructions vary by platform.

11
E-Marketplace

Mac
Use the following instructions for macOS:

1. Start Android Studio.
2. Open plugin preferences (Preferences > Plugins as of v3.6.3.0 or later).
3. Select the Flutter plugin and click Install.
4. Click Yes when prompted to install the Dart plugin.
5. Click Restart when prompted.

Linux or Windows
Use the following instructions for Linux or Windows:

1. Open plugin preferences (File > Settings > Plugins).
2. Select Marketplace, select the Flutter plugin and click Install.

10.Configure Android Studio for Flutter Development:
After installing Dart and Flutter plugins create a flutter app to check if it is
working properly or not, to do so follow the steps mentioned below:

1: Open the IDE and select Start a new Flutter project

2: Select the Flutter Application as the project type. Then click Next.

12
E-Marketplace

3: Verify the Flutter SDK path specifies the SDK’s location (select Install SDK…
if the text field is blank).

4: Enter a project name (for example, myapp). Then click Next.

 5: Click Finish.

13
E-Marketplace

6: Wait for Android Studio to install the SDK and create the project.

Note: When creating a new Flutter app, some Flutter IDE plugins ask for a
company domain name in reverse order, something like co. Example. The
company domain name and project name are used together as the package name
for Android (the Bundle ID for iOS) when the app is released. If you think that
the app might be released, it’s better to specify the package name now. The
package name can’t be changed once the app is released, so make the name
unique.

The above steps create a Flutter project directory called flutter_app that
contains a simple demo app that uses Material Components.

11.Running the application:
Follow the below steps to run the flutter application that was structured above:

1: Locate the main Android Studio toolbar:

Step 2: In the target selector, select an Android device for running the app. If
none are listed as available, select Tools> Android > AVD Manager and create
one there. For details, see Managing AVDs.

Step 3: Click the run icon in the toolbar or invoke the menu item

Run > Run. After the app build completes, you’ll see the starter

app on your device.

https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

14
E-Marketplace

Creating a responsive E-marketplace mobile application with following

features for merchant and customer

Merchant

 Merchant login page

 Merchant home page

 Merchant category list page

 Merchant category details page

 Merchant categories add page.

 Merchant product list page

 Merchant product details page

 Merchant products add page.

 Merchant products edit page.

 Merchant order received page

Customer

Customer login page

Customer registration page

Customer home page

My profile page.

Product display page

Cart page

Payment page

My order page.

Order summary page

Import the Project

1) Open -Android Studio->select unzip emarketplace_app file->open

project.

15
E-Marketplace

Inside lib Folder

API: Inside api/api.dart it contains api call details all page

Components: All components (rounded button, text field container) are

available here. we can use all the above using the required class.

Shared preferences: In this dart file contain variable store the login details data.

Create Customer login Page.

 Here Text field widget used for user input as email id and password. Flat Button

widget, to show action. Also, used Image to set logo for login page.

Inside lib/Screen/customer_login

16
E-Marketplace

Background. Dart: All page background class are available here

CustomerLogin_pojo.dart: There have a static method called from Json which

receives Map object. Then set mail id and password values from our Map object

called data. Now can use our function to convert our json to class.

customer_detail_pojo.dart: There have a static method called from Json which

receives Map object. Then we set name, emailid, password address and phone

number values from our Map object called data. Now use our function to convert

our json to class.

customer_login_screen.dart: It contain main function entry of my program

execution, and MyApp class which takes an object of Login class as a parameter

of the home property.

body.dart:

• Set Scaffold’s app Bar property as follows to make heading for our

application.

• For this UI, all widgets are placed inside the Column widget, into the

Scaffold body. The first child of Column is the Container widget which

holds Image widget as it’s child.

• flutter-logo.png file copied into asset/images folder in this flutter

application and write into pubspec.yaml file to get it in our code.

• Then, for email id and password use the TextField widget from inside

component.RoundedmailLoginfield function for emailid and

Roundedpasswardfield password is an input widget that helps you to take

input from the user

• For the login button, use from component Roundedbutton ‘Login’ as a child

and onPressed() of this button we can write code for control navigation to

another home screen. After pressed login button all customer detail sends

17
E-Marketplace

to backend

// API Call from server //

String url = api.customerlogin;

// Write the following code Inside lib/Screen/customer_login/body.dart //

var res = await http.post(Uri.parse(url),
headers: {'Content-Type': 'application/json'},
body: json.encode({'email': login.email, 'password': login.password}));
// Connect both frond and end back server //
var data = json.decode(res.body);
// Status command from backend server //
var Response = data["Customerdetails"] as List;
// mapping with POJO code with customer detail //
customer_detail =
Response.map<Customer_detail>((json)=> Customer_detail.fromJson(json)).toList();

Response: When customer logins, api call occurs and a list appears which

contain customer details and in that all customer details are stored using shared

preference.

Stringvalue.email = sharedPreferences.getString("email");

http.post: Request the specified url through POST method by posting the

supplied data and return the response as Future<Response>

http.get: is used to fetch the data from the Internet.

json.encode: The Encodable function is used to convert it to an object that must

be directly encodable.

json.decode: Is used to decode the JSON data into the Dart Map object. Once

JSON data is decoded, it will be converted into List<customerdetails> using

fromMap of the CustomerLogin class.

Flutter toast: Once get the response from backend “Login Successfully” add

18
E-Marketplace

flutter toaster message.

Create Customer Registration Page

 Here Text field widget used for user input as name, emailid, password and

phonenumber Flat Button widget, to show action. Also, used Image to set logo for

Registration page.

Inside lib/Screen/customer_signup

background. Dart: All page background class are available here

Customersignup_Pojo.dart: There have a static method called from Json which

receives Map object. Then set name, emailid, password phone number and

address values from our Map object called data. Now use our function to convert

our json to class.

or_divider.dart: It contains divider line function

social_icon.dart: It contains the social icon function

customer_signup_screen.dart: It contains main function entry point of my

program execution, and MyApp class which takes an object of Login class as a

parameter of the home property.

19
E-Marketplace

Body.dart:

• Set Scaffold’s appBar property as follows to make heading for our

application.

• For this UI, all widgets are placed inside the Column widget, into the

Scaffold body. The first child of Column is the Container widget which

holds Image widget as it’s child.

• flutter-logo.png file copied into asset/images folder in this flutter

application and write into pubspec.yaml file to get it in our code.

• Then, for emailid and password use the TextField widget from inside

component.RoundedmailLoginfield for emailid, name, password and

phone number is an input widget that helps you to take input from the

user

• For the login button, use from component Roundedbutton ‘Signup’ as a

child and onPressed() of this button we can write code for control

navigation to another home screen. After pressed login button all

customer detail sends to backend

// API Call from server //

String url = api.customerregister;

http.post: Request the specified url through POST method by posting the

supplied data and return the response as Future<Response>

http.get: Is used to fetch the data from the Internet.

json.encode: The Encodable function is used to convert it to an object that must

be directly encodable.

Flutter toast: Once get the response from backend “Register Successfully” add

flutter toaster message.

20
E-Marketplace

// Write the following code Inside lib/Screen/customer_signup/body.dart

//

 var res = await http.post(Uri.parse(url),
 headers: {'Content-Type': 'application/json'},
 body: json.encode({
 'name': siginup.name,
 'email': siginup.email,
 'password': siginup.password,
 'phone': siginup.phone,
 }));
 // status command get from back end server //
 if (res.body == "Registered Successfully") {
 Navigator.push(
 context,
 MaterialPageRoute(
 builder: (context) => LoginScreen(),
));

 // flutter toast command //
 Fluttertoast.showToast(
 msg: "Registered Successfully",
 toastLength: Toast.LENGTH_SHORT,
 gravity: ToastGravity.CENTER,
 timeInSecForIosWeb: 2,
 backgroundColor: Colors.black,
 textColor: Colors.white);
 } else {
 Fluttertoast.showToast(
 msg: "Invalid user",
 toastLength: Toast.LENGTH_SHORT,
 gravity: ToastGravity.CENTER,
 timeInSecForIosWeb: 2,
 backgroundColor: Colors.black,
 textColor: Colors.white);
 }

Customer Home Page:

Inside lib/Screen/customer_home

21
E-Marketplace

CategoryDetail.dart: There have a static method called from Json which

receives Map object. Then set category name and category image values from our

Map object called data. Now use our function to convert our json to class.

home.dart:

Set Scaffold’s app Bar property as follows to make heading for our

application.

// API Call from server //

String url = api.category;

// Write the following code Inside lib/Screen/customer_home/home.dart

//

Future GetCategoryList() async {
var res = await http
.get(Uri.parse(url), headers: {'Content-Type': 'application/json'});
print("category list success${res.body}");
if (res.body != null) {
var data = json.decode(res.body);
// List the category name image in this list //
var Response = data["Category"] as List;
//Map the category detail //
setState(() {
categorydetial =
Response.map<CategoryDetail>((json) => CategoryDetail.fromJson(json))
.toList();
}); }}

22
E-Marketplace

When category, api call occurs and a list appears which contain category details.

http.get: Is used to fetch the data from the Internet.

json.encode: The Encodable function is used to convert it to an object that must

be directly encodable.

json.decode: Is used to decode the JSON data into the Dart Map object. Once

JSON data is decoded, it will be converted into List<categorydetail> using from

Map of the Categorydetail class pojo code.

• In Flutter, you can encode a local or network image (or another kind of

file) to a base64 string like this Ref link:

https://www.kindacode.com/snippet/flutter-turn-an-image-into-a-

base64-string-and-vice-versa/

• Drawer and list view My profile, My cart, My order, logout.

• Display the Category image Base64 is an encoding scheme that can carry

data stored in binary formats. The application of base64 string is common

in web and mobile app development.

• The Image. Memory constructor helps to display images from bytes.

Hence, we must convert the base64 string to bytes using dart convert and

display mage list view constructor. The standard List View constructor

works well for small lists. To work with lists that contain many items, it’s

best to use the ListView.builder constructor.

• In contrast to the default List View constructor, which requires creating all

items at once, the ListView.builder() constructor creates items as they’re

scrolled onto the screen.

https://www.kindacode.com/snippet/flutter-turn-an-image-into-a-base64-string-and-vice-versa/
https://www.kindacode.com/snippet/flutter-turn-an-image-into-a-base64-string-and-vice-versa/

23
E-Marketplace

Create My Profile Page:

ApiServiceProjectDetail.dart: It contains api detail update profile.

String get updateprofile

=>"http://121.242.232.216:7070/emarket/updateprofile";

When customer logins, api call occurs and a list appears which contain customer

details using shared preferences.

profiledetailpojo.dart: There have a static method called from Json which

receives Map object. Then we set name, emailid, phonenumber and address

values from our Map object called data. Now use our function to convert our json

to class.

Flutter toast: Once get the response from backend server “Update Successfully”

add flutter toaster message.

/// Write the following code Inside

lib/Screen/customer_home/profile.dart //

 Map data = {
 "email": "${Stringvalue.email}",
 "password": "${Stringvalue.password}"
 };
 final loginRequestJson = jsonEncode(data);
 var res = await http.post(Uri.parse(url),
 headers: {'Content-Type': 'application/json'}, body: loginRequestJson);
 if (res.body != null) {
 var data = json.decode(res.body);
 // list of customer detial from server //
 var Response = data["Customerdetails"] as List;
// map profile detail //
 profiledetailmatch =
 Response.map<ProfileDetailMatch>((json) => ProfileDetailMatch.fromJson(json))
 .toList();
}

http://121.242.232.216:7070/emarket/updateprofile

24
E-Marketplace

// API Call from server //

String url = api.customerlogin;

json.decode: Is used to decode the JSON data into the Dart Map object. Once

JSON data is decoded, it will be converted into List<profiledetailmatch> using

from Map of the ProfileDetailMatch class pojo code.

profile.dart: Flutter User Profile Page UI where you can access and edit your

user's information within your Flutter app Text field Controller

it’s useful to run a call back function every time the text in a text field change have

edit form where some data in text fields controller from database.

Here is my requirement, when I click the Update button, dynamically new cards

with nine Text Fields should be generated,

eg: name, emailid password, doorno, area, city, state and pincode. Once update all

value click update button all data send to backend using customer login api call

Create Product List and Add to Cart Page:

Inside lib/Screen/product_management

25
E-Marketplace

We will be using SQLite and Shared Preferences in our application to store the

data locally on the device itself. SQLite and Shared Preferences store data, while

Provider manages the application’s state.

API CALL PRODUCT LIST

 When products, api call occurs and a list appears which contain product details.

// API call product //

String url = api.product;

// Write the following code Inside

lib/Screen/product_management/product_list.dart //

List<Product_detail> product_detail;
bool isloading = false;
Future<dynamic> productdetailsfuture;
// function get all product list //
Future getallproductlist() async {
var res = await http.post(Uri.parse(url),
headers: {'Content-Type': 'application/json'},
body: json.encode({'category': categoryname}));
if (res.body != null) {
var data = json.decode(res.body);
// get the product detail from database //
var Response = data["Productdetails"] as List;

26
E-Marketplace

product_detail =
Response.map<Product_detail>((json) => Product_detail.fromJson(json))
.toList();
print ("the product descr ${product_detail[0]
.productdetails
.toString()}");
setState(() {
isloading = true;
});
}
}

http.post: Request the specified url through POST method by posting the

supplied data and return the response as Future<Response>

json.encode: The Encodable function is used to convert it to an object that must

be directly encodable.

json.decode: Is used to decode the JSON data into the Dart Map object. Once

JSON data is decoded, it will be converted into List<product_detail> using from

Map of the product_detail class.

1. Build shopping cart:

The first is a product screen, which displays a list of products along with photos,

the name of the product, and the price. Each list item includes a button. that

allows you to add it to your shopping basket. The AppBar includes a shopping

cart icon with a badge that updates the item count whenever a user presses the

Add to Cart button. The second screen, the shopping cart screen, displays a list of

the things that the user added to it. If the user decides to remove it from the cart,

a delete button removes the item from the cart screen. The entire cost is shown at

the bottom of the screen. A button that, for the time being, displays a Snack Bar

confirming that the payment has been processed.

2. SETUP:

27
E-Marketplace

Next, we are going to start off with creating our model classes named Cart and

Item. So, create a new Dart file and name it cart_model, or you can also name it

per your requirements Ref (Cartmodel.dart)

Create another Dart file and enter product_pojo (Ref:product_pojo.dart)

3. Add Sqflite:

As previously stated, we will be utilizing SQFlite, which is essentially SQLite for

Flutter, and we will save the data locally within the phone memory. We are not

uploading or retrieving data from the cloud because the objective of this post is to

learn the fundamental operation of a cart screen. So, using the SQLite package,

we’re constructing a database class called DB Helper (Ref:DBHelper.dart)

4. Add the Provider Class:

The next step will be to develop our Provider class, which will include all our

methods and will separate our UI from the logic that will eventually manage our

entire application. We use Shared Preferences in addition to SQLite. The reason

for using Shared Preferences is because it wraps platform-specific persistence to

store simple data such as the item count and total price, so that even if the user

exits the application and returns to it, that information will still be available. (Ref

cart_provider.dart)

5. Create a basic Shopping cart UI:

So, starting from the top that is the AppBar, we have added an Icon Button

wrapped with our Badge package that we added to our application. The Icon is of

a shopping cart and the badge over it shows how many items have been added to

our cart. Please have a look at the image and code below. We have wrapped the

Text widget with a Consumer widget because every time a user clicks on the Add

28
E-Marketplace

to Cart button, the whole UI does not need to get rebuilt when the Text widget

must update the item count. And the Consumer widget does exactly that for us

The Scaffold ‘s body is a List View builder that returns a Card widget with the

information from the lists we created, the name of the product, unit, and price

per unit, and a button to add that item to the cart.

We have initialized our Cart Provider class and created a function that will save

data to the database when the Add to Cart button is clicked. It also updates the

Text widget badge in the AppBar and add total price to the Database that will

eventually show up in the Cart screen.

6. Create Cart Screen:

 Moving on to the cart screen, the layout is like the product list screen. When the

user clicks the Add to Cart button, the entire information is carried onto the cart

screen. The implementation is like what we’ve seen with other ecommerce

applications. The primary distinction between the two layouts is that the cart

screen includes an increment and decrement button for increasing and

decreasing the quantity of the item. When users click the plus sign, the quantity

increases, and when they click the minus sign, the quantity decreases. The total

price of the cart is added or subtracted when the plus and minus buttons are

pressed. The delete button deletes the item from the cart list and subtracts the

price from the total price. Again, we have wrapped our ListView builder with the

Consumer widget because only parts of the UI need to be rebuilt and updated, not

the whole page. (Ref:cartscreen.dart)

Look towards the end of the code, just before the bottom navigation bar, for a

Consumer widget that returns Value Notifier Builder from within the Column

widget. It is responsible for updating the quantity for the specific item when the

29
E-Marketplace

user clicks either the plus or minus button on the cart screen. There is a bottom

navigation bar with a button at the bottom of the screen.

After Pressed the Continue button its navigator to Order summary page

Create Order Summary Page:

Inside lib/Screen/order_summary

order_summary_pojo.dart: There have a static method called from Json which

receives Map object. Then set customer detail order date and time order id and

product details values from our Map object called data. Now use our function to

convert our json to class.

order_summary.dart:

• Previously, store the customer detail id each customer (name emailid

phone number, address) data by using Shared Preferences is the way in

which one can store and retrieve small amounts of primitive data as

key/value pairs to a file on the device storage.

• Display the store all shared preferences top corner of the page.

• Now create a new class named as OrderSummaryScreen() this will be

going to be a stateful class because our application does change its state at

run time. And return MaterialApp().

30
E-Marketplace

• The Map object is a simple key/value pair. Keys and values in a map may be

of any type. Map data list each element.

• jsonencode: The Encodable function is used to convert it to an object that

must be directly encodable.

// MAP DATA//

Map mapData;
list.forEach((element)
{
mapData = {
"productid": element.productId,
"productname": element.productName,
"productquantity": element.initialquantity,
"productprice": element.productPrice,
"productimage": element.image,
"productdetail" : element.productDetails,
};
ls.add(json.encode(mapData));}

// API call for order summary //

String get order summary =>

"http://121.242.232.216:7070/emarket/ordersummary"

 • Send all detail to order summary api call to backend server using json format

// Write the following code Inside

lib/Screen/order_summary/order_summary.dart //

 var request = json.encode([{"productlist":json.decode("${ls}"),"totalprice":

"${total}",

"customerid":"${Stringvalue.id}","customername": "${Stringvalue.name}","customeremail":
"${Stringvalue.email}",
"customerphoneno": "${Stringvalue.mobilenumber}",
"customeraddressno": "${Stringvalue.addressno}",

31
E-Marketplace

"customerarea": "${Stringvalue.area}",
"customercity": "${Stringvalue.city}",
"customerstate": "${Stringvalue.state}",
"customerpincode": "${Stringvalue.pincode}"
}]);// mapping
var res = await http.post(Uri.parse(ordersummary),
headers: {'Content-Type': 'application/json'},
body: request);

• Once Get the response “Inserted Successfully”.

• Flutter toast: Once get the response from backend “Order Successfully

“add flutter toaster message.

• Follow the same procedure Cart screen page.

• Total price value passed through payment function (Ref: payment.dart)

We can use Navigator. push () to navigate to a new route and Navigator.

pop () to navigate to the previous route.

• After Getting response from backend server customer get invoice mail to

customer email id.

Create Order Management Page:

Inside lib/Screen/order_management

//API CALL FOR ORDER PAGE //

String url = api.merchantorder;

orderlist_pojo.dart: There have a static method called from Json which receives

32
E-Marketplace

Map object.

Then set orderdetail customer detail and product detail values from our Map

object called data. Now we can use our function to convert our json to class.

// Write the following code Inside

lib/Screen/order_management/order_management.dart //

var res = await http.post(Uri.parse(url),
headers: {'Content-Type': 'application/json'});
if (res.body != null) {
var data = json.decode(res.body);
// get the orderdetail from backendd side //
var Response = data["orderdetails"] as List;

setState((){
merchantorder_detail =
Response.map<Merchantorder_detail>((json) => Merchantorder_detail.fromJson(json)).toList();}
);}
json.decode: Is used to decode the JSON data into the Dart Map object. Once

JSON data is decoded, it will be converted into List<merchantorder_detail> using

from Map of the Merchantorder_detail class pojo code.

Create Merchant Login Page:

Inside lib/Screen/merchant_login

Follow up same procedure as Customer Login Page

33
E-Marketplace

body.dart:

// API Call from server //

String url = api.merchantlogin;

// Write the following code Inside lib/Screen/merchant_login/body.dart //

Future GetMerchantLoginDetail() async {
var res = await http.post(Uri.parse(url),
// json mapping //
headers: {'Content-Type': 'application/json'},
body: json.encode({'email': merchantlogindetail.email, 'password':
merchantlogindetail.password}));
// status command for backend server merchant login page //
if (res.body == "Successfull") {
Navigator.push(
context,
MaterialPageRoute(
builder: (context) => MerchantScreen(),
));
// flutter toast command //
Fluttertoast.showToast(
msg: "Login Successfully",
toastLength: Toast.LENGTH_SHORT,
gravity: ToastGravity.CENTER,
timeInSecForIosWeb: 2,
backgroundColor: Colors.black,
textColor: Colors.white);
} else {
Fluttertoast.showToast(
msg: "Invalid user",
toastLength: Toast.LENGTH_SHORT,
gravity: ToastGravity.CENTER,
timeInSecForIosWeb: 2,
backgroundColor: Colors.black,
textColor: Colors.white); }}

 Create Category Management:

Inside lib/Screen/category_management

34
E-Marketplace

add_category: Newly add category name and image send to through

insertcategory api call to backend.

api_service.dart: It contains api detail category.

String get insertcategory =>

"http://121.242.232.216:7070/emarket/insertcategory";

String get deletecategory =>

"http://121.242.232.216:7070/emarket/deletecategory";

String get category => "http://121.242.232.216:7070/emarket/category";

category_detail.dart: Displays category details

category_list.dart: Displays List of category name

category_pojo.dart: There is a static method called from Json which receives

Map object. Then set category name and image values from our Map object called

data. Now use our function to convert our json to class.

main.dart: The main file of the generated project is the entry point of the Flutter

application: void main () =>runApp(MyApp()); The main function by itself is the

Dart entry point of an application.

35
E-Marketplace

As we mention in the first paragraph, we will use the HTTP library package to

access the REST full API from the REST API server. For that, install this package

by open and edit pubspec.yaml then add this dependency.

category_pojo.dart: That represent the SQLite table. This class is about category

detail.

api_service.dart Where we will put all CRUD (POST, GET, PUT, DELETE)

methods to the REST API. Fill this class with this CRUD operation of HTTP

requests to the REST API.

// Write the following code Inside

lib/Screen/category_management/api_service.dart //

List<dynamic> categorydetail = [];
var res = await http.get(Uri.parse(category));
if (res.body != null) {
var data = json.decode(res.body);
if (res.statusCode == 200) {
var Response = data["Category"] as List;
categorydetail=Response.map((item)=> CategoryDetail.fromJson(item)).toList();
} else {
throw "Failed to load cases list1";
}
}
return categorydetail;

http.get: Is used to fetch the data from the Internet.

Response: When product, api call occurs and a list appears which contain

productdetail

json.decode: Is used to decode the JSON data into the Dart Map object. Once

JSON data is decoded, it will be converted into List<categorydetail> using from

Map of the Categorydetail class pojo code.

36
E-Marketplace

// Write the following code Inside

lib/Screen/categorymanagement/api_service.dart //

Update Category

Map data = {

'name': updatecategory.name,
};
final Response response = await http.put(
Uri.parse('$insertcategory/$id'),
headers: <String, String>{
'Content-Type': 'application/json; charset=UTF-8',
},
body: jsonEncode(data),
);

1.CATEGORY LIST:

• We will display the list of data in a separate Dart file that will call from the

main. Dart home page body. For that, we need a dart file to view the list of

data. (Ref:category_list.dart)

• Class name that extends Stateless Widget object. Inside that class, declare

these variables that hold Category list that loaded from the main. Dart and

create Key for the list. Add an override method after the variables to build

the ListView widget for the list of categories. That List View builder

contains the Card that has the child of InkWell that use to navigate to the

Detail Widget using MaterialPageRoute. The child of the Card is ListTile

that contains an Icon (leading), Text (title), and Text(subtitle).

• The Inkwell widget has an on-Tap event with an action to Navigate to the

details page. Container, Column, Image, and Text have their own

properties to adjust the style or layout.

37
E-Marketplace

• Keep in mind, every widget that uses the child only has one widget as its

child. If you need to put more than one widget to the parent widget, use

children: <Widget> property.

• Next, open and main.dart then replace all Dart codes with these lines of

codes to display the List View in the main home page. We use the existing

floating button as the add-data button with an action to go to Add Category

Widget.dart.

2.Category Detail:

We will display data details to another page that opened when tapping on a list

item in the list page. For that, create a Dart file in the lib folder detail

category.dart. We will use a scrollable Card widget to display a detail to prevent

overflow if the Card content is longer. Next, open and edit lib/detailwidget.dart

then add these imports of Flutter material, database helper, editdatawidget, and

cases object model.

• Add a Detail Widget class that extends Stateful Widget. This class has a

constructor with an object field, a field of Category object and

_DetailWidgetState that builds the view for data detail.

• Add a _DetailWidgetState class that implementing all required widgets to

display data details.

• To handle the delete button, we need to add a method or function after the

above method that shows an alert dialog to confirm if data will be deleted.

// Write the following code

Inside lib/Screen/categorymanagement/category_detail.dart //

38
E-Marketplace

return showDialog<void>(
context: context,
barrierDismissible: false, // user must tap button!
builder: (BuildContext context) {
return AlertDialog(
title: Text('Warning!'),
content: SingleChildScrollView(
child: ListBody(
children: <Widget>[
Text('Are you sure want delete this item?'),
],
),
),
actions: <Widget>[
ElevatedButton(
child: Text('Yes'),
onPressed: () {
api.deleteCategory(categoryid);
Navigator.push(
context,
MaterialPageRoute(
builder: (context) {
return CategoryMainPage();
},
),); },
),
ElevatedButton(
child: const Text('No'),
onPressed: () {
Navigator.push(
context,
MaterialPageRoute(
builder: (context) {
return CategoryMainPage();
},
),); },),],);},);}

Create Product Management:

Inside lib/Screen/product_management

39
E-Marketplace

add_Product: Newly add product name, description, price, category, quantity,

and image send to through insert product api call to back end.

api_service.dart: It contains api detail insert delete product.

String get insertproduct =>

"http://121.242.232.216:7070/emarket/insertproduct";

String get updateproduct =>

"http://121.242.232.216:7070/emarket/updateproduct";

String get deleteproduct =>

"http://121.242.232.216:7070/emarket/deleteproduct";

String get listproduct =>

"http://121.242.232.216:7070/emarket/listproduct";

product_detail.dart: It display product details

product_list.dart: It display List of product details are product name, price,

category, description, quantity and image

category_pojo.dart: There is a static method called from Json which receives

Map object. Then set category name and image values from our Map object called

data. Now use our function to convert our json to class.

40
E-Marketplace

main.dart:The main file of the generated project is the entry point of the Flutter

application: void main() => runApp(MyApp()); The main function by itself is the

Dart entry point of an application.

As we mention in the first paragraph, we will use the HTTP library package to

access the REST full API from the REST API server. For that, install this package

by open and edit pubspec.yaml then add this dependency.

category_pojo.dart: That represent the SQLite table. This class is about category

detail.

api_service.dart where we will put all CRUD (POST, GET, PUT, DELETE)

methods to the REST API. Fill this class with this CRUD operation of HTTP

requests to the REST API.

// Write the following code Inside

lib/Screen/product_management/api_service.dart //

List<dynamic> product = [];
var res = await http.get(Uri.parse(listproduct));
if (res.body != null) {
var data = json.decode(res.body);
if (res.statusCode == 200) {
var Response = data["Product"] as List;
product = Response.map((item) => Productdetails.fromJson(item)).toList();
} else {
throw "Failed to load cases list1";
}
}
return product;

http.get: Is used to fetch the data from the Internet.

Response: Once fetch category api get data product list.it contain each product

name, price, category, description, quantity, and image

41
E-Marketplace

json.decode is used to decode the JSON data into the Dart Map object. Once JSON

data is decoded, it will be converted into List<product> using from Map of the

Productdetail class pojo code. After getting the Product List it has product name,

price, category, decription, quantity and image.

// Write the following code Inside

lib/Screen/product_management/api_service.dart //

Map data = {
'id': id,
'name': updateproducts.name,
'category': updateproducts.category,
'description': updateproducts.description,
'price': updateproducts.price,
'quantity': updateproducts.quantity,
};
final Response response = await http.post(
Uri.parse(updateproduct),
headers: <String, String>{
'Content-Type': 'application/json; charset=UTF-8',
},
body: jsonEncode(data),
);

if (response.statusCode == 200) {
Fluttertoast.showToast(
msg: "Product Update Succesfully",
toastLength: Toast.LENGTH_SHORT,
gravity: ToastGravity.CENTER,
timeInSecForIosWeb: 2,
backgroundColor: Colors.black,
textColor: Colors.white);
} else {
Fluttertoast.showToast(
msg: "Product Update Faliure",
toastLength: Toast.LENGTH_SHORT,
gravity: ToastGravity.CENTER,
timeInSecForIosWeb: 2,
backgroundColor: Colors.black,
textColor: Colors.white);
}

42
E-Marketplace

1. PRODUCT LIST:

• We will display the list of data in a separate Dart file that will call from the

main.dart home page body. For that, we need a dart file to view the list of

data. (Ref:product_list.dart)

• Class name that extends Stateless Widget object. Side that class, declare

these variables that hold Product list that loaded from the main. Dart and

create Key for the list. Add an override method after the variables to build

the List View widget for the list of categories. That ListView builder

contains the Card that has the child of Inkwell that use to navigate to the

Detail Widget using MaterialPageRoute. The child of the Card is List Tile

that contains an Icon (leading), Text (title), and Text(subtitle).

• The Inkwell widget has an on-Tap event with an action to Navigate to the

details page. Container, Column, Image, and Text have their own

properties to adjust the style or layout.

• Keep in mind, every widget that uses the child only has one widget as its

child. If you need to put more than one widget to the parent widget, use

children: <Widget> property.

• Next, open and edit lib/main.dart then replace all Dart codes with these

lines of codes to display the ListView in the main home page. We use the

existing floating button as the add-data button with an action to go to

AddCategoryWidget.dart.

 2. Product Detail:

We will display data details to another page that opened when tapping on a list

43
E-Marketplace

item in the list page. For that, create a Dart file in the lib folder detail product

Dart. We will use a scrollable Card widget to display a detail to prevent overflow

if the Card content is longer. Next, open and edit detailwidget.dart then add

these imports of Flutter material, database helper, editdatawidget, and cases

object model.

• Add a Detail Widget class that extends Stateful Widget. This class has a

constructor with an object field, a field of Product object and

_DetailWidgetState that builds the view for data detail.

Add a _DetailWidgetState class that implementing all required widgets to display

data details.

• To handle the delete button, we need to add a method or function after the

above method that shows an alert dialog to confirm if data will be deleted.

// Write the following code Inside

lib/Screen/product_management/product_detail.dart //

return showDialog<void>(
context: context,
barrierDismissible: false, // user must tap button!
builder: (BuildContext context) {
return AlertDialog(
title: Text('Warning!'),
content: SingleChildScrollView(
child: ListBody(
children: <Widget>[
Text('Are you sure want delete this item?'),
],
),
),
actions: <Widget>[
ElevatedButton(
child: Text('Yes'),
onPressed: () {
api.deleteProducts(id);
Navigator.push(

44
E-Marketplace

context,
MaterialPageRoute(
builder: (context) {
return MyApp_edit_product();
},
),
);
},
),
ElevatedButton(
child: const Text('No'),
onPressed: () {
Navigator.push(
context,
MaterialPageRoute(
builder: (context) {
return MyApp_edit_product(); },),); },),],); },);

3. Edit Product Detail

That codes build widgets combination of Container, Card, Column, Image, Text,

and Raised Button. The Raised Buttons has on Pressed event that action to

navigate to the EditDataWidget and trigger delete confirm dialog. Next, before

the closing of _DetailWidgetState class body add this method or function to

navigate to the EditDataWidget with cases object params. The layout for edit data

is the same as the add data view with additional object params that get from the

details page. This object will fill the default value of the TextFormField and

Submit Button. On the submit it will update the data based on the ID then

redirect to the list view. First, create a new dart file in the lib folder

lib/editdatawidget.dart. Open and edit that file then add these lines of the dart

codes to build the edit form and function to submit this form to the REST API.

45
E-Marketplace

CREATE MY ORDER PAGE:

Inside lib/Screen/myorder

//API CALL FOR ORDER PAGE //

String url = api.customerorder;

my_order_pojo.dart: There have a static method called from Json which receives

Map object. Then set order detail customer detail and product detail values from

our Map object called data. Now use our function to convert our json to class.

// Write the following code Inside lib/Screen/myorder/my_order.dart //

Map data = {
"customerid": "${Stringvalue.id}",
};
// json script //
final loginRequestJson = jsonEncode(data);
var res = await http.post(Uri.parse(url),
headers: {'Content-Type': 'application/json'}, body: loginRequestJson);
if (res.body != null) {
var data = json.decode(res.body);
// list of customer order detail in server //
var Response = data["orderdetails"] as List;

setState((){
customerorder_detail =
Response.map<Customerorder_detail>((json) => Customerorder_detail.fromJson(json))
.toList();
});
}

46
E-Marketplace

Map data with each customer id

json.decode: Is used to decode the JSON data into the Dart Map object. Once

JSON data is decoded, it will be converted into List<customerorder_detail> using

from Map of the CustomerOrder class pojo code.

my_order.dart: Just display Customer detail and Product detail

(Ref:productlist.dart)

PAYMENT GATEWAY INTEGRATION:

Inside lib/Screen/payment

1. Razorpay Payment:

Razor pay Payments provide a range of products to accept

payments and make payouts.

2.Create a Razor pay account and log in to the dashboard:

You must sign up for a Razor pay account to use the Razorpay

Payments products and access the Razor pay Dashboard.

Sign Up

To create a Razorpay Account, go to the Razorpay website and

click Get Started.

Follow these steps for a smooth sign-up process:

https://easy.razorpay.com/

47
E-Marketplace

1. Contact Details

2. Platform Details

3. Business Type and PAN Details

4. Communication Details

Contact Details

Provide your contact details to get started.

1. Enter your 10-digit Mobile Number.

2. Select the check box below to receive updates on WhatsApp.

Click Send OTP.

3. Enter the OTP sent to your mobile number. If you did not receive

the OTP, click Resend OTP.

4. Click Submit OTP.

48
E-Marketplace

5.Enter your Name and click Continue.

49
E-Marketplace

Platform Details

Tell us more about where you want to accept payments.

1.Select where you want to accept payments from the given

options. You can also select multiple options if relevant.

2.In case you select Others as an option, add a description.

Click Continue.

3.If you select Website/App, add your website/app link and

click Continue or click Add Later to add the details afterwards.

50
E-Marketplace

Business Type and PAN Details

Provide the following business and PAN details:

1.Select your business type from the list. Know more about

different business types.

2.Click Continue.

https://razorpay.com/docs/payments/easy-create-account#business-type-and-pan-details
https://razorpay.com/docs/payments/easy-create-account#business-type-and-pan-details

51
E-Marketplace

3.Enter your PAN/Business PAN and click Continue. We will

verify the details with the Central PAN database.

4.Confirm the name associated with the PAN by clicking Yes,
Confirm. To edit the PAN details, click Edit PAN.

52
E-Marketplace

5.Enter your Brand Name. This should be the name of your

business that your customers recognise. Click Continue.

6.Select the relevant Business Category from the list. For
example, retail store, online store/marketplace, government
and so on.

53
E-Marketplace

7.Choose a Subcategory from the list. For example, if you
selected Online store/Marketplace then specify the category
under it from the list.

8.Specify the category under the subcategory selected in the
previous step. In case you selected Ecommerce, then specify
the category under it from the list.

54
E-Marketplace

9.Describe your business in at least 50 characters.
Click Continue.

55
E-Marketplace

3.Test Mode

Once your account is created, you have access to the Test mode

on the Dashboard. Test mode is used for testing purposes and

does not involve actual money transactions. However, you

would need to activate your account in order to accept live

payments.

 4.API Keys

API key is a combination of the key_id and key_secret and is

required to make any API request to Razorpay. You also have

to implement the API key in your code as part of your

integration process.

5.Generate API Keys

• Log into your Dashboard with appropriate credentials.

• Select the Test mode for which you want to generate the API key.

• Test Mode: The test mode is a simulation mode that you

can use to test your integration flow. Your customers will

not be able to make payments in this mode.

56
E-Marketplace

• Navigate to Settings → API Keys → Generate Key to generate key

for the selected mode.

Once generated, you will be able to see the Key Id, the date

the key was created and the expiry date for the API Key on

screen.

// Write the following code Inside lib/Screen/payment/payment.dart //
 var options = {
 "key": "rzp_test_4B5CoaTyxFQh3I", // generate key from razorpay website //
 "amount": payment_price * 100, // payment price value get from order summary page //
 "name": "INdigrain",
 "description": "payment for the product",
 "prefill": {"contact": "${Stringvalue.mobilenumber}", "email": "${Stringvalue.email}"},
 };
 try {
 razorpay.open(options);
 } catch (e) {
 print(e.toString());
 }

Replace generated key from Razorpay.

key: < your key >

example: rzp_test_vLqPyNVpDeLzJg

Pass the Checkout options. Ensure that you pass the order_id that you received

in the response to the previous step.

57
E-Marketplace

Running the application

After Completed all the code and Run the Main.dart File

Install App in Mobile

58
E-Marketplace

FINAL OUTPUT:

 CUSTOMER LOGIN CUSTOMER REGISTRATION

 CUSTOMER HOME:

59
E-Marketplace

 PROFILE PRODUCT LIST

CART SCREEN ORDERSUMMARY

60
E-Marketplace

 ORDERMANAGEMENT

MERCHANT LOGIN

61
E-Marketplace

 CATEGORY LIST CATEGORY DETAIL

PRODUCTLIST PRODUCTDETAILS

62
E-Marketplace

 EDIT PRODUCT MYORDER

SAMPLE OUTPUT PAYMENT

63
E-Marketplace

Part- B Build the Backend and Database for E-marketplace mobile

application.

Building the backend of E-marketplace using Spring Boot framework.

Install Java SE 13 (JDK)

Note: Although newer versions of the JDK are available, NetBeans requires a file included
in versions 13 and earlier for the installation.

1. Follow this link to download Java SE 13:

https://www.oracle.com/java/technologies/javase/jdk13-archive-downloads.html

2. Select the Windows x64 Installer option for JDK 13.0.2 (scroll down the page to reach
this spot). Click the link on the right side of this option to download it.

Note: You may need to create an Oracle User account to download this software. If so, you
can use your college email account and address when setting up your account:

3. After downloading, double-click the downloaded file (likely in your Downloads
folder) and follow the installation instructions. Leave default settings from the installer as
they are.

 4. Now, let us set the JDK path.

Now, we will see how to set Java JDK Path (Environment Variable).

At first, copy the path wherein you installed the Java JDK. Let us copy it first. Remember, we
need to copy the bin path i.e. the following on our system:

C:\Program Files\Java\jdk-13\bin

Here’s the screenshot of the “bin” path, wherein we installed Java 13:

https://www.oracle.com/java/technologies/javase/jdk13-archive-downloads.html

64
E-Marketplace

5. To set JDK Path, the easiest way is to type “Environment Variables” on Start. On
typing, the following would be visible:

6. Now, click on “Edit Environment Variables” and a new dialog box would be visible:

65
E-Marketplace

7. Now, click “Environment Variable” and a new dialog box will open. Go to “User
Variables” section.

8. Click “New”. Type PATH in the Variable name and add the Java JDK path “C:\Program
Files\Java\jdk-13\bin” as displayed in the below screenshot:

66
E-Marketplace

Above, press Ok.

 9. Follow a similar process to set System Variables.

10. Now, we will verify the JDK installation.

Now, we can easily verify java installation was successfully or not using the following
command on command prompt:

java -version

Install Apache NetBeans IDE

Note: Don’t run the Apache NetBeans installer before Java is installed on your system.

 1. Open the web page https://netbeans.apache.org/download/ .

Go to the NetBeans 17 download page by clicking one of the Download buttons.

2. In the next page, make sure to download the Windows 64-bit version of NetBeans.

3. Now go to your Downloads folder (or wherever you had NetBeans downloaded to)
and double-click the NetBeans installer file to run it (Apache-NetBeans-17-bin-windows-
x64.exe). Click the Next button on the NetBeans 17 installer window.

4. In the License Agreement window, click the checkbox to accept the terms. Then
click Next.

5. In the next window, under JDK for the Apache NetBeans IDE, make sure that the

https://netbeans.apache.org/download/

67
E-Marketplace

location of the correct JDK has been chosen. You may have multiple versions of JDK on
your computer. The version you installed in Step 1 should be specified here (change to the
right one if it says different).

6. Click Install in the next window.

Installation may take a few minutes. After it’s done, click the Finish button.

A Java Spring project requires a set of libraries and packages that enable the requested
features. For our project, we select Maven as the project management tool. Maven helps
to build and manage your Java project. It creates a so-called POM (Project-Object-Model)
with all the information and configuration details of the project, which is saved in a
pom.xml file.

Importing the Project

1. Open Apache NetBeans, select File › Open Project

 2. Unzip the emarketplace-Copy.zip folder and select the unzip folder containing the
Maven project you want to import.

68
E-Marketplace

Click Open Project to complete the process.

 3. The directory structure of the spring boot project will look like this.

69
E-Marketplace

To configure your project to use JDK 13:

1. Right-click the project in the Projects window and select Properties from the context
menu.

2. In the Project Properties dialog box, choose Build -> Compile and set JDK 13 as the
Java Platform

3. Click OK to save the changes.

Create POJOs (plain old Java object) for Merchant, Customer, Category, Product, Order, and
Orderproducts.

1. Customer.java

In the Projects window, Inside project file > source packages > com.spring.app.model. Open
Customer.java file and write the following code.

Inside Customer class, Create private fields with their data types for id, name, email, phone,
password, addressno, area, city, state, and pincode.

 private String id;

 private String email;

 private String password;

 private String phone;

70
E-Marketplace

 private String name;

 private String addressno;

 private String area;

 private String city;

 private String state;

 private String pincode;

2. Create an empty constructor (Hibernate, which handles the JPA requires an empty
constructor). Write the following code.

public Customer() {}

3. Create a constructor with the arguments id, name, email, phone, password,
addressno, area, city, state, and pincode. Write the following code.

public Customer(String email, String password, String phone, String name, String

id, String addressno, String area, String city, String state, String pincode) {

 this.id = id;

 this.email = email;

 this.password = password;

 this.name = name;

 this.phone = phone;

 this.addressno = addressno;

 this.area = area;

 this.city = city;

 this.state = state;

 this.pincode = pincode;

71
E-Marketplace

 }

4. Create accessor methods (i.e., getter and setter methods) for this field.

The IDE can create accessor methods for you. In the editor, right-click on `value` and choose Insert
Code (or press Alt-Insert). In the popup menu, choose Getter and Setter.

In the dialog that displays, select all the fields, then click Generate. The getValue() and setValue()
methods are added to the Customer class.

5. Merchant.java

In the Projects window, Inside project file > source packages > com.spring.app.model. Open

Merchant.java file and write the following code.

Inside Merchant class, Create private fields with their data types for id, name, email, phone, gstno,
and password.

 private String id;

 private String email;

 private String password;

 private String phone;

 private String name;

 private String gstno;

6. Create an empty constructor (Hibernate, which handles the JPA requires an empty

72
E-Marketplace

constructor). Write the following code.

public Merchant() {}

7. Create a constructor with the arguments id, name, email, phone, gstno, and
password. Write the following code.

public Merchant(String email, String password, String phone, String name, String

gstno, String id) {

 this.email = email;

 this.password = password;

 this.phone = phone;

 this.name = name;

 this.gstno = gstno;

 this.id = id;

 }

8. Create accessor methods (i.e., getter and setter methods) for this field.

The IDE can create accessor methods for you. In the editor, right-click on `value` and choose Insert
Code (or press Alt-Insert). In the popup menu, choose Getter and Setter.

In the dialog that displays, select all the fields, then click Generate. The getValue() and setValue()
methods are added to the Merchant class.

73
E-Marketplace

9. Category.java

In the Projects window, Inside project file > source packages > com.spring.app.model. Open
Category.java file and write the following code.

Inside Category class, Create private fields with their data types for id, name, and image.

 private String id;

 private String image;

 private String name;

10. Create an empty constructor (Hibernate, which handles the JPA requires an empty
constructor). Write the following code.

public Category() {}

11. Create a constructor with the arguments name, image, and id. Write the following
code.

public Category(String name, String image, String id) {

 this.name = name;

 this.image = image;

 this.id = id;

 }

12. Create accessor methods (i.e., getter and setter methods) for this field.

The IDE can create accessor methods for you. In the editor, right-click on `value` and choose Insert
Code (or press Alt-Insert). In the popup menu, choose Getter and Setter.

74
E-Marketplace

In the dialog that displays, select all the fields, then click Generate. The getValue() and setValue()
methods are added to the Category class.

13. Product.java

In the Projects window, Inside project file > source packages > com.spring.app.model. Open
Product.java file and write the following code.

Inside Product class, Create private fields with their data types for id, name, description, price,
category, quantity, initialquantity and image.

 private String name;

 private String id;

 private String description;

 private String image;

 private String price;

 private String category;

 private String quantity;

 private String initialquantity ="1";

14. Create an empty constructor (Hibernate, which handles the JPA requires an empty

75
E-Marketplace

constructor). Write the following code.

public Product() {}

15. Create a constructor with the arguments id, name, description, price, category,
quantity, initialquantity and image. Write the following code.

public Product(String name, String description, String image, String price, String

category, String quantity, String initialquantity, String id) {

 this.id = id;

 this.name = name;

 this.description = description;

 this.image = image;

 this.price = price;

 this.category = category;

 this.quantity = quantity;

 this.initialquantity = initialquantity;

}

16. Create accessor methods (i.e., getter and setter methods) for this field.

The IDE can create accessor methods for you. In the editor, right-click on `value` and choose Insert
Code (or press Alt-Insert). In the popup menu, choose Getter and Setter.

76
E-Marketplace

In the dialog that displays, select all the fields, then click Generate. The getValue() and setValue()
methods are added to the Product class.

17. Order.java

In the Projects window, Inside project file > source packages > com.spring.app.model. Open
Order.java file and write the following code.

Inside Order class, Create private fields with their data types for customerid, customername,
customeremail, customerphoneno, customeraddressno, customerarea, customercity,
customerstate, customerpincode, totalprice, ordereddatetime, orderid, orderrefid, and productlist.

 private String totalprice;

 private String customerid;

 private String customername;

 private String customeremail;

 private String customerphoneno;

 private String customeraddressno;

 private String customerarea;

 private String customercity;

 private String customerstate;

77
E-Marketplace

 private String customerpincode;

 private String ordereddatetime;

 private int orderid;

 private int orderrefid;

 private List<Orderproducts> productlist;

18. Create an empty constructor (Hibernate, which handles the JPA requires an empty
constructor). Write the following code.

public Order() {}

19. Create a constructor with the arguments customerid, customername,
customeremail, customerphoneno, customeraddressno, customerarea, customercity,
customerstate, customerpincode, totalprice, ordereddatetime, orderid, orderrefid. Write
the following code.

public Order(String totalprice, String customerid, String customername, String

customeremail, String customerphoneno, String customeraddressno, String

customerarea, String customercity, String customerstate, String customerpincode,

String ordereddatetime, int orderid, int orderrefid) {

 this.totalprice = totalprice;

 this.customerid = customerid;

 this.customername = customername;

 this.customeremail = customeremail;

 this.customerphoneno = customerphoneno;

 this.customeraddressno = customeraddressno;

 this.customerarea = customerarea;

 this.customercity = customercity;

78
E-Marketplace

 this.customerstate = customerstate;

 this.customerpincode = customerpincode;

 this.ordereddatetime = ordereddatetime;

 this.orderid = orderid;

 this.orderrefid = orderrefid;

}

20. Create accessor methods (i.e., getter and setter methods) for this field.

The IDE can create accessor methods for you. In the editor, right-click on `value` and choose Insert
Code (or press Alt-Insert). In the popup menu, choose Getter and Setter.

In the dialog that displays, select all the fields, then click Generate. The getValue() and setValue()
methods are added to the Order class.

21. Orderproducts.java

In the Projects window, Inside project file > source packages > com.spring.app.model. Open
Orderproducts.java file and write the following code.

Inside Orderproducts class, Create private fields with their data types for productname,
productprice, productquantity, productquantity, productid, productimage, and productdescription.

 private String productname;

 private String productprice;

79
E-Marketplace

 private String productquantity;

 private String productid;

 private String productimage;

 private String productdescription;

22. Create an empty constructor (Hibernate, which handles the JPA requires an empty
constructor). Write the following code.

public Orderproducts() {}

23. Create a constructor with the arguments productname, productprice,
productquantity, productquantity, productid, productimage, and productdescription. Write
the following code.

public Orderproducts(String productname, String productprice, String

productquantity, String productid, String productimage, String productdescription)

{

 this.productname = productname;

 this.productprice = productprice;

 this.productquantity = productquantity;

 this.productid = productid;

 this.productimage = productimage;

 this.productdescription = productdescription;

}

24. Create accessor methods (i.e., getter and setter methods) for this field.

The IDE can create accessor methods for you. In the editor, right-click on `value` and choose Insert
Code (or press Alt-Insert). In the popup menu, choose Getter and Setter.

80
E-Marketplace

In the dialog that displays, select all the fields, then click Generate. The getValue() and setValue()
methods are added to the Orderproducts class.

 Create Spring Boot API Controller for merchant and customer.

controller package is used to implement a Spring Boot RestAPI controller to handle all
incoming requests (post/get/put/delete) and response to rest-client.

Create REST end points that performs the basic database operations such as Create, Read,
Update, Delete

Merchant

• Handling merchant login
• Manage Categories

o List category
o Insert category
o Delete category

• Manage Products
o List product
o Insert product
o Update product
o Delete product

• List Received Order

Customer

• Handling customer login
• Handling customer register
• Manage Profile

81
E-Marketplace

• List Order
• List Categories
• List Products
• Order checkout
• Generate Invoice & send via email

 1. Handling merchant login

This method is used to login as merchant.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")

 @RequestMapping(value = "/merchantlogin", method = RequestMethod.POST)

 public String loginMerchant(@RequestBody Merchant merchant) {

 String s = "select count(*) from merchant where memail=? AND mpassword=?";

 System.out.println("s = " + merchant.getEmail());

 System.out.println("s = " + merchant.getPassword());

 System.out.println("s = " + s);

 int count = jdbc.queryForObject(s, new Object[]{merchant.getEmail(),

merchant.getPassword()}, Integer.class);

 System.out.println("count = " + count);

 if (count > 0) {

 return "Successfull";

 } else {

82
E-Marketplace

 return "Failure";

 }

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/merchantlogin") annotation sets the base path to the resource
endpoints in the controller as /merchantlogin.

@RequestMapping(method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send email and password of a merchant.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/merchantlogin” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the loginMerchant method.

Inside loginMerchant method is where you create the query to count data values from the merchant
table.

The SQL SELECT statement can be used along with COUNT (*) function to count of all rows present in
the merchant table and SQL query that returns a value object like String then you can use the
queryForObject() method of JdbcTempalte class. This method takes an argument about what type of
class query will return and then convert the result into that object and returns it to the caller.

 2. List category

This method is used to display categories.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")

 @RequestMapping(value = "/category", method = RequestMethod.GET)

 public JSONObject category() {

 String s = "select catcategoryname AS name, catcategoryimage AS image,

catid AS id from category";

83
E-Marketplace

 List<Category> mrlist = jdbc.query(s, new

BeanPropertyRowMapper(Category.class));

 System.out.println("mrlist = " + mrlist);

 JSONObject json = new JSONObject();

 json.put("Category", mrlist);

 if (!mrlist.isEmpty()) {

 json.put("Category", mrlist);

 System.out.println("json = " + json);

 return json;

 }

 return json;

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/category") annotation sets the base path to the resource endpoints in the
controller as /category.

@RequestMapping(method = RequestMethod.GET), and is used to map HTTP GET requests to
the mapped controller methods. We used it to return all the categories.

Inside category method is where you create the query to return a list of categories from the category
table.

The SQL string contains a query to select all the category details from the category table and if your
SQL query is going to return a List of objects instead of just one object then you need to use the
query () method of JdbcTempalte. These methods provide to convert the result to a custom object.
For instance, the simplest way to query and handle results is via the query (String, RowMapper)
method. This method uses RowMapper to map the returned row to an object.

84
E-Marketplace

 3. Insert category

This method is used to insert categories.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

 @CrossOrigin(origins = "*")

 @RequestMapping(value = "/insertcategory", method = RequestMethod.POST)

 public String insertCategory(@RequestBody Category category) {

 String s = "insert into

category(catcategoryname,catcategoryimage)values(?,?)";

 System.out.println("s = " + category.getName());

 System.out.println("s = " + category.getImage());

 System.out.println("s = " + s);

 int a = jdbc.update(s, category.getName(), category.getImage());

 System.out.println("a = " + a);

 if (a == 1) {

 return "Inserted Successfully";

 } else {

 return "Inserted failure";

 }

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

85
E-Marketplace

@RequestMapping("/insertcategory") annotation sets the base path to the resource
endpoints in the controller as /insertcategory.

@RequestMapping(method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send name and image of a category.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/insertcategory” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the insertCategory method.

Inside insertCategory method is where you create the query to insert a category in the category
table.

The update method provided by JdbcTemplate can be used for insert, update, and delete
operations.

The SQL string is used to perform a single insert operation. Here '?' means it acts as the parameter
which we need to pass while executing the query. Now to execute the query, we have used the
JdbcTemplate update() method, which takes the query as an argument, and other than the query
there are 2 values that correspond to 2 '?' respectively.

 4. Delete category

This method is used to delete categories.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")

 @RequestMapping(value = "/deletecategory", method = RequestMethod.POST)

 public String deleteCategory(@RequestBody Category category) {

 String s = "delete from category where catid= ('" + category.getId() +

"')";

 System.out.println("s = " + s);

 int a = jdbc.update(s);

 System.out.println("a = " + a);

 if (a == 1) {

86
E-Marketplace

 return "Deleted Successfully";

 } else {

 return "Deleted Failure";

 }

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/deletecategory") annotation sets the base path to the resource
endpoints in the controller as / deletecategory.

@RequestMapping(method = RequestMethod.POST is used to map HTTP POST request to the
mapped controller methods. We used it to send id of a category.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/deletecategory” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the deleteCategory method.

Inside deleteCategory method is where you create the query to delete categories from the category
table.

Create a SQL string to delete category by ID from category table. Call the update method of
JdbcTemplate and pass the string to be bound to the query.

 5. List product

This method is used to list products.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")

 @RequestMapping(value = "/listproduct", method = RequestMethod.GET)

 public JSONObject product() {

87
E-Marketplace

 String s = "select proid AS id, proname AS name, proimage AS image,

prodescription AS description, proprice AS price, procategory AS category,

proquantity AS quantity, proinitialquantity AS intialquantity from product";

 List<Product> mrlist = jdbc.query(s, new

BeanPropertyRowMapper(Product.class));

 System.out.println("mrlist = " + mrlist);

 JSONObject json = new JSONObject();

 json.put("Product", mrlist);

 if (!mrlist.isEmpty()) {

 json.put("Product", mrlist);

 System.out.println("json = " + json);

 return json;

 }

 return json;

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/listproduct") annotation sets the base path to the resource endpoints in
the controller as /listproduct.

@RequestMapping(method = RequestMethod.GET) is used to map HTTP GET request to the
mapped controller methods. We used it to return all the products.

Inside product method is where you create the query to return a list of products from the product
table.

The SQL string contains a query to select all the product details from the product table and if your
SQL query is going to return a List of objects instead of just one object then you need to use the

88
E-Marketplace

query () method of JdbcTempalte. These methods provide to convert the result to a custom object.
For instance, the simplest way to query and handle results is via the query (String, RowMapper)
method. This method uses RowMapper to map the returned row to an object.

 6. Insert product

This method is used to insert products.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")

 @RequestMapping(value = "/insertproduct", method = RequestMethod.POST)

 public String insertProduct(@RequestBody Product product) {

 String s = "insert into

product(proname,proimage,proprice,prodescription,procategory,proquantity,proinitia

lquantity)values(?,?,?,?,?,?,?)";

 System.out.println("s = " + product.getName());

 System.out.println("s = " + product.getImage());

 System.out.println("s = " + product.getPrice());

 System.out.println("s = " + product.getDescription());

 System.out.println("s = " + product.getCategory());

 System.out.println("s = " + product.getQuantity());

 System.out.println("s = " + product.getInitialquantity());

 System.out.println("s = " + s);

89
E-Marketplace

 int a = jdbc.update(s, product.getName(), product.getImage(),

product.getPrice(), product.getDescription(), product.getCategory(),

product.getQuantity(), product.getInitialquantity());

 System.out.println("a = " + a);

 if (a == 1) {

 return "Inserted Successfully";

 } else {

 return "Inserted failure";

 }

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/insertproduct") annotation sets the base path to the resource
endpoints in the controller as /insertproduct.

@RequestMapping(method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send name, image, price, description, quantity, and initial
quantity of a product.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/insertproduct” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the insertProduct method.

Inside insertProduct method is where you create the query to insert a product in the product table.

The update method provided by JdbcTemplate can be used for insert, update, and delete
operations.

The SQL string is used to perform a single insert operation. Here '?' means it acts as the parameter
which we need to pass while executing the query. Now to execute the query, we have used the
JdbcTemplate update() method, which takes the query as an argument, and other than the query
there are 7 values that correspond to 7 '?' respectively.

90
E-Marketplace

 7. Update product

This method is used to update products.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")

 @RequestMapping(value = "/updateproduct", method = RequestMethod.POST)

 public String updateProduct(@RequestBody Product product) {

 String s = "update product set proname= ?, prodescription= ?, procategory=

?, proprice= ?, proquantity= ? where proid=('" + product.getId() + "')";

 System.out.println("s = " + product.getName());

 System.out.println("s = " + product.getDescription());

 System.out.println("s = " + product.getCategory());

 System.out.println("s = " + product.getPrice());

 System.out.println("s = " + product.getQuantity());

 System.out.println("s = " + s);

 int a = jdbc.update(s, product.getName(), product.getDescription(),

product.getCategory(), product.getPrice(), product.getQuantity());

 System.out.println("a = " + a);

 if (a == 1) {

 return "Updated Successfully";

 } else {

 return "Updated Failure";

 }

91
E-Marketplace

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/uodateproduct") annotation sets the base path to the resource
endpoints in the controller as /updateproduct.

@RequestMapping(method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send name, image, price, description, quantity and initial
quantity of the product.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/updateproduct” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the updateProduct method.

Inside updateProduct method is where you create the query to update a product in the product
table.

The update method provided by JdbcTemplate can be used for insert, update, and delete
operations.

The SQL string is used to update the product details by ID and pass the string to the update method
of JdbcTemplate followed by object arguments of type string which are the name, description,
quantity, price, and category. Note that the ID is only used to find the product to be updated but the
ID itself is not updated.

 8. Delete product

This method is used to delete products.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

 @CrossOrigin(origins = "*")

 @RequestMapping(value = "/deleteproduct", method = RequestMethod.POST)

 public String deleteProduct(@RequestBody Product product) {

 String s = "delete from product where proid= ('" + product.getId() + "')";

 System.out.println("s = " + s);

92
E-Marketplace

 int a = jdbc.update(s);

 System.out.println("a = " + a);

 if (a == 1) {

 return "Deleted Successfully";

 } else {

 return "Deleted Failure";

 }

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/deleteproduct") annotation sets the base path to the resource
endpoints in the controller as /deleteproduct.

@RequestMapping(method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send id of a product.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/deleteproduct” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the deleteProduct method.

Inside deleteProduct method is where you create the query to delete product from the product
table.

Create a SQL string to delete the products by ID from product table. Call the update method of
JdbcTemplate and pass the string to be bound to the query.

 9. List Received Order

This method is used to display received orders.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

93
E-Marketplace

@CrossOrigin(origins = "*")

 @RequestMapping(value = "/merchantorder", method = RequestMethod.POST)

 public JSONObject order() {

 String s = "select distinct osrefid AS orderrefid, max(oscustomername) AS

customername, max(oscustomeremail) AS customeremail, max(oscustomerphone) AS

customerphoneno, max(oscustomeraddressno) AS customeraddressno,

max(oscustomerarea) AS customerarea, max(oscustomercity) AS customercity,

max(oscustomerstate) AS customerstate, max(oscustomerpincode) AS customerpincode,

max(ostotalprice) AS totalprice, max(osordereddatetime) AS ordereddatetime from

ordersummary group by osrefid order by osrefid";

 System.out.println("s = " + s);

 List<Order> orderidList = jdbc.query(s, new

BeanPropertyRowMapper(Order.class));

 System.out.println("orderidList = " + orderidList.isEmpty());

 JSONArray orderArr = new JSONArray();

 JSONObject orderObj = new JSONObject();

 if (!orderidList.isEmpty()) {

 for (Order orObj : orderidList) {

 JSONObject orderDetObj = new JSONObject();

 orderDetObj.put("orderrefid", orObj.getOrderrefid());

 orderDetObj.put("totalprice", orObj.getTotalprice());

 orderDetObj.put("customername", orObj.getCustomername());

 orderDetObj.put("customeremail", orObj.getCustomeremail());

94
E-Marketplace

 orderDetObj.put("customerphoneno", orObj.getCustomerphoneno());

 orderDetObj.put("customeraddressno",

orObj.getCustomeraddressno());

 orderDetObj.put("customerarea", orObj.getCustomerarea());

 orderDetObj.put("customercity", orObj.getCustomercity());

 orderDetObj.put("customerstate", orObj.getCustomerstate());

 orderDetObj.put("customerpincode", orObj.getCustomerpincode());

 orderDetObj.put("ordereddatetime", orObj.getOrdereddatetime());

 String t = "select osproductname AS productname, osproductprice AS

productprice, osproductimage AS productimage, osproductquantity AS

productquantity, osproductprice AS productprice from ordersummary where osrefid="

+ orObj.getOrderrefid();

 System.out.println("t = " + t);

 List<Orderproducts> productlist = jdbc.query(t, new

BeanPropertyRowMapper(Orderproducts.class));

 System.out.println("productlist = " + productlist.isEmpty());

 System.out.println("productlist = " + productlist);

 JSONArray pdlistArr = new JSONArray();

 if (!productlist.isEmpty()) {

 for (Orderproducts pdlist : productlist) {

 JSONObject pdlisObj = new JSONObject();

95
E-Marketplace

 pdlisObj.put("productname", pdlist.getProductname());

 pdlisObj.put("productquantity",

pdlist.getProductquantity());

 pdlisObj.put("productprice", pdlist.getProductprice());

 pdlisObj.put("productimage", pdlist.getProductimage());

 pdlistArr.add(pdlisObj);

 }

 orderDetObj.put("pdlist", pdlistArr);

 orderArr.add(orderDetObj);

 }

 }

 orderObj.put("orderdetails", orderArr);

 }

 return orderObj;

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/merchantorder") annotation sets the base path to the resource
endpoints in the controller as /merchantorder.

@RequestMapping(method = RequestMethod.POST) is used to map HTTP POST request to
the mapped controller methods. We used it to send customer details, order details and product
details.

Inside order method is where you create the query to return customer details, product details and
order details as list from the ordersummary table.

96
E-Marketplace

The SQL s string contains a query to select the customer details, product details and order details
from the ordersummary table and if your SQL query is going to return a List of objects instead of
just one object then you need to use the query () method of JdbcTempalte. These methods provide
to convert the result to a custom object. For instance, the simplest way to query and handle results
is via the query (String, RowMapper) method. This method uses RowMapper to map the returned
row to an object.

 10. Handling customer login

This method is used to login as customer.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

 @CrossOrigin(origins = "*")

 @RequestMapping(value = "/customerlogin", method = RequestMethod.POST)

 public JSONObject loginCustomer(@RequestBody Customer customer) {

 String s = "select cemail AS email, cpassword AS password, cname AS name,

cid AS id, cphone AS phone,caddressno AS addressno, carea AS area, ccity AS city,

cstate AS state, cpincode AS pincode from customer where cemail=CAST('" +

customer.getEmail() + "' AS VARCHAR) AND cpassword=CAST('" +

customer.getPassword() + "' AS VARCHAR)";

 System.out.println("s = " + customer.getEmail());

 System.out.println("s = " + customer.getPassword());

 System.out.println("s = " + s);

 List<Customer> mrlist = jdbc.query(s, new

BeanPropertyRowMapper(Customer.class));

 System.out.println("mrlist = " + mrlist);

 JSONObject json = new JSONObject();

 json.put("Customerdetails", mrlist);

97
E-Marketplace

 if (!mrlist.isEmpty()) {

 json.put("Customerdetails", mrlist);

 System.out.println("json = " + json);

 return json;

 }

 return json;

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/customerlogin") annotation sets the base path to the resource
endpoints in the controller as /customerlogin.

@RequestMapping(method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send email and password of a customer.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/customerlogin” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the loginCustomer method.

Inside loginCustomer method is where you create the query to return customer details as list from
the customer table.

The SQL s string contains a query to select the customer ID by email and password from the
customer table and if your SQL query is going to return a List of objects instead of just one object
then you need to use the query () method of JdbcTempalte. These methods provide to convert the
result to a custom object. For instance, the simplest way to query and handle results is via the query
(String, RowMapper) method. This method uses RowMapper to map the returned row to an object.

 11. Handling customer registration

This method is used to register as customer.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

98
E-Marketplace

@CrossOrigin(origins = "*")

 @RequestMapping(value = "/customerregister", method = RequestMethod.POST)

 public String customerRegister(@RequestBody Customer customer) {

 String s = "insert into

customer(cname,cemail,cpassword,cphone)values(?,?,?,?)";

 System.out.println("s = " + customer.getEmail());

 System.out.println("s = " + customer.getPassword());

 System.out.println("s = " + customer.getName());

 System.out.println("s = " + customer.getPhone());

 System.out.println("s = " + s);

 int a = jdbc.update(s, customer.getName(), customer.getEmail(),

customer.getPassword(), customer.getPhone());

 System.out.println("a = " + a);

 if (a == 1) {

 return "Registered Successfully";

 } else {

 return "Registeration failure";

 }

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/customerregister") annotation sets the base path to the resource

99
E-Marketplace

endpoints in the controller as /customerregister.

@RequestMapping(method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send name, email ID, password, and phone No of a
customer.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/customerregister” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the customerRegister method.

Inside customerRegister method is where you create the query to insert customer details in the
customer table.

The update method provided by JdbcTemplate can be used for insert, update, and delete
operations.

The SQL string is used to perform a single insert operation. Here '?' means it acts as the parameter
which we need to pass while executing the query. Now to execute the query, we have used the
JdbcTemplate update() method, which takes the query as an argument, and other than the query
there are 4 values that correspond to 4 '?' respectively.

 12. Manage profile

This method is used to update customer profile.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")

 @RequestMapping(value = "/updateprofile", method = RequestMethod.POST)

 public String updateProfile(@RequestBody Customer customer) {

 String s = "update customer set cemail= ?, cpassword= ?, cname= ?, cphone=

?, caddressno= ?, carea= ?, ccity= ?, cstate= ?, cpincode= ? where cid=('" +

customer.getId() + "')";

 System.out.println("s = " + customer.getEmail());

 System.out.println("s = " + customer.getPassword());

100
E-Marketplace

 System.out.println("s = " + customer.getName());

 System.out.println("s = " + customer.getPhone());

 System.out.println("s = " + customer.getAddressno());

 System.out.println("s = " + customer.getArea());

 System.out.println("s = " + customer.getCity());

 System.out.println("s = " + customer.getState());

 System.out.println("s = " + customer.getPincode());

 System.out.println("s = " + s);

 int a = jdbc.update(s, customer.getEmail(), customer.getPassword(),

customer.getName(), customer.getPhone(), customer.getAddressno(),

customer.getArea(), customer.getCity(), customer.getState(),

customer.getPincode());

 System.out.println("a = " + a);

 if (a == 1) {

 return "Updated Successfully";

 } else {

 return "Updated Failure";

 }

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/updateprofile") annotation sets the base path to the resource
endpoints in the controller as /updateprofile.

101
E-Marketplace

@RequestMapping(method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send details of a customer.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/updateprofile” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the updateProfile method.

Inside updateProfile method is where you create the query to update customer details in the
customer table.

The update method provided by JdbcTemplate can be used for insert, update, and delete
operations.

The SQL string is used to update the customer details by ID and pass the string to the update method
of JdbcTemplate followed by object arguments of type string which are the email, password, name,
phone, address no, state, city, area, and pin code. Note that the ID is only used to find the customer
to be updated but the ID itself is not updated.

 13. List Order

This method is used to display history of orders.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")

 @RequestMapping(value = "/customerorder", method = RequestMethod.POST)

 public JSONObject customerOrder(@RequestBody Order order) {

 String s = "select distinct osrefid AS orderrefid, oscid AS customerid,

oscustomername AS customername, oscustomeremail AS customeremail, oscustomerphone

AS customerphoneno, oscustomeraddressno AS customeraddressno, oscustomerarea AS

customerarea, oscustomercity AS customercity, oscustomerstate AS customerstate,

oscustomerpincode AS customerpincode, ostotalprice AS totalprice,

osordereddatetime AS ordereddatetime from ordersummary where oscid=('" +

order.getCustomerid() + "') order by osrefid";

 System.out.println("s = " + s);

102
E-Marketplace

 List<Order> orderidList = jdbc.query(s, new

BeanPropertyRowMapper(Order.class

));

 System.out.println("orderidList = " + orderidList.isEmpty());

 JSONArray orderArr = new JSONArray();

 JSONObject orderObj = new JSONObject();

 if (!orderidList.isEmpty()) {

 for (Order orObj : orderidList) {

 JSONObject orderDetObj = new JSONObject();

 orderDetObj.put("orderrefid", orObj.getOrderrefid());

 orderDetObj.put("customerid", orObj.getCustomerid());

 orderDetObj.put("customername", orObj.getCustomername());

 orderDetObj.put("customeremail", orObj.getCustomeremail());

 orderDetObj.put("customerphoneno", orObj.getCustomerphoneno());

 orderDetObj.put("customeraddressno",

orObj.getCustomeraddressno());

 orderDetObj.put("customerarea", orObj.getCustomerarea());

 orderDetObj.put("customercity", orObj.getCustomercity());

 orderDetObj.put("customerstate", orObj.getCustomerstate());

 orderDetObj.put("customerpincode", orObj.getCustomerpincode());

 orderDetObj.put("totalprice", orObj.getTotalprice());

103
E-Marketplace

 orderDetObj.put("ordereddatetime", orObj.getOrdereddatetime());

 String t = "select osproductname AS productname, osproductprice AS

productprice, osproductimage AS productimage, osproductquantity AS

productquantity, osproductprice AS productprice, osproductdescription AS

productdescription from ordersummary where oscid= '" + orObj.getCustomerid() + "'

AND osrefid= '" + orObj.getOrderrefid() + "'";

 System.out.println("t = " + t);

 List<Orderproducts> productlist = jdbc.query(t, new

BeanPropertyRowMapper(Orderproducts.class

));

 System.out.println("productlist = " + productlist.isEmpty());

 System.out.println("productlist = " + productlist);

 JSONArray pdlistArr = new JSONArray();

 if (!productlist.isEmpty()) {

 for (Orderproducts pdlist : productlist) {

 JSONObject pdlisObj = new JSONObject();

 pdlisObj.put("productname", pdlist.getProductname());

 pdlisObj.put("productquantity",

pdlist.getProductquantity());

 pdlisObj.put("productprice", pdlist.getProductprice());

 pdlisObj.put("productimage", pdlist.getProductimage());

104
E-Marketplace

 pdlisObj.put("productdescription",

pdlist.getProductdescription());

 pdlistArr.add(pdlisObj);

 }

 orderDetObj.put("pdlist", pdlistArr);

 orderArr.add(orderDetObj);

 }

 }

 orderObj.put("orderdetails", orderArr);

 }

 return orderObj;

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/customerorder") annotation sets the base path to the resource
endpoints in the controller as /customerorder.

@RequestMapping(method = RequestMethod.POST is used to map HTTP POST request to the
mapped controller methods. We used it to send customer details, order details, and product details.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/customerorder” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the customerOrder method.

Inside order method is where you create the query to return customer details, product details and
order details as list based on customer ID from the ordersummary table.

The SQL s string contains a query to select the customer details, product details and order details by
customer ID from the ordersummary table and if your SQL query is going to return a List of objects
instead of just one object then you need to use the query () method of JdbcTempalte. These

105
E-Marketplace

methods provide to convert the result to a custom object. For instance, the simplest way to query
and handle results is via the query (String, RowMapper) method. This method uses RowMapper to
map the returned row to an object.

 14. List Products

This method is used to display products.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")

 @RequestMapping(value = "/product", method = RequestMethod.POST)

 public JSONObject product(@RequestBody Product product) {

 String s = "select procategory AS category, proname AS name,

prodescription AS description, proprice AS price, proimage AS image,

proinitialquantity AS initialquantity, proquantity AS quantity, proid AS id from

product where procategory=CAST('" + product.getCategory() + "' AS VARCHAR)";

 System.out.println("select procategory AS category, proname AS name,

prodescription AS description, proprice AS price, proimage AS image,

proinitialquantity AS initialquantity, proquantity AS quantity, proid AS id from

product where procategory=CAST('" + product.getCategory() + "' AS VARCHAR)");

 List<Product> mrlist = jdbc.query(s, new

BeanPropertyRowMapper(Product.class

));

 System.out.println("mrlist = " + mrlist);

 JSONObject json = new JSONObject();

 json.put("Productdetails", mrlist);

 if (!mrlist.isEmpty()) {

106
E-Marketplace

 json.put("Productdetails", mrlist);

 System.out.println("json = " + json);

 return json;

 }

 return json;

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/product") annotation sets the base path to the resource endpoints in the
controller as /product.

@RequestMapping(method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to return all the products.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/product” URL with a Post JSON body, the HttpMessageConverters converts the
JSON request body into a Post object and passes it to the product method.

Inside product method is where you create the query to return products based on category
from the product table.

The SQL string contains a query to select the product details by category from the product
table and if your SQL query is going to return a List of objects instead of just one object
then you need to use the query () method of JdbcTempalte. These methods provide to
convert the result to a custom object. For instance, the simplest way to query and handle
results is via the query (String, RowMapper) method. This method uses RowMapper to map
the returned row to an object.

 15. Order checkout

This method is used to display order summary.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

107
E-Marketplace

@CrossOrigin(origins = "*")

 @RequestMapping(value = "/ordersummary", method = RequestMethod.POST)

 public String insertOrder(@RequestBody List<Order> odlist) {

 String maxid = "select coalesce(max(osrefid),0) AS refid from

ordersummary";

 int maxrefid = jdbc.queryForObject(maxid, Integer.class);

 if (!odlist.isEmpty()) {

 for (Orderproducts odlist1 : odlist.get(0).getProductlist()) {

 int quantity = Integer.parseInt(odlist1.getProductquantity());

 String s = "select proid AS id, proname AS name, proimage AS

image, prodescription AS description, proprice AS price, procategory AS category,

proquantity AS quantity, proinitialquantity AS intialquantity from product where

proid = " + Integer.parseInt(odlist1.getProductid()) + "";

 List<Product> mrlist = jdbc.query(s, new

BeanPropertyRowMapper(Product.class));

 System.out.println("totalquantity = " + mrlist);

 for (int i = 0; i < mrlist.size(); i++) {

 int totalquantity =

Integer.parseInt(mrlist.get(i).getQuantity());

 if (quantity > totalquantity) {

 return "Some Products are Out of Stock";

108
E-Marketplace

 }

 }

 }

 }

 String s = "insert into

ordersummary(osproductname,osproductprice,osproductquantity,osproductimage,ostotal

price,osordereddatetime,ospid,oscid,oscustomername,oscustomeremail,oscustomerphone

,oscustomeraddressno,oscustomerarea,oscustomercity,oscustomerstate,oscustomerpinco

de,osrefid)"

 + "values(?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";

 List<Object[]> dataObjList = new ArrayList<>();

 if (!odlist.isEmpty()) {

 Date d = new Date();

 SimpleDateFormat formatter = new SimpleDateFormat("dd MMMM yyyy

HH:mm:ss z");

 String strDate = formatter.format(d);

 String id = odlist.get(0).getCustomerid();

 String totalprice = odlist.get(0).getTotalprice();

 String name = odlist.get(0).getCustomername();

 String email = odlist.get(0).getCustomeremail();

 String phone = odlist.get(0).getCustomerphoneno();

109
E-Marketplace

 String address = odlist.get(0).getCustomeraddressno();

 String area = odlist.get(0).getCustomerarea();

 String city = odlist.get(0).getCustomercity();

 String state = odlist.get(0).getCustomerstate();

 String pincode = odlist.get(0).getCustomerpincode();

 for (Orderproducts odlist1 : odlist.get(0).getProductlist()) {

 Object[] dataObjArr = new Object[17];

 dataObjArr[0] = odlist1.getProductname();

 dataObjArr[1] = odlist1.getProductprice();

 dataObjArr[2] = odlist1.getProductquantity();

 dataObjArr[3] = odlist1.getProductimage();

 dataObjArr[4] = totalprice;

 dataObjArr[5] = strDate;

 dataObjArr[6] = Integer.parseInt(odlist1.getProductid());

 dataObjArr[7] = Integer.parseInt(id);

 dataObjArr[8] = name;

 dataObjArr[9] = email;

 dataObjArr[10] = phone;

 dataObjArr[11] = address;

 dataObjArr[12] = area;

110
E-Marketplace

 dataObjArr[13] = city;

 dataObjArr[14] = state;

 dataObjArr[15] = pincode;

 dataObjArr[16] = maxrefid + 1;

 System.out.println("dataObjArr = " + Arrays.toString(dataObjArr));

 dataObjList.add(dataObjArr);

 System.out.println("dataObjList = " + dataObjList);

 }

 }

 int[] a = jdbc.batchUpdate(s, dataObjList);

 System.out.println("a = " + Arrays.toString(a));

 System.out.println("a.length = " + a.length);

 if (a.length >= 1) {

 String t = "";

 for (Orderproducts odlist1 : odlist.get(0).getProductlist()) {

 t += "update product set proquantity = (CAST(proquantity AS

INTEGER)-" + odlist1.getProductquantity() + ") where proid = (" +

odlist1.getProductid() + ");";

 }

111
E-Marketplace

 System.out.println("t = " + t);

 jdbc.update(t);

 String htmlCnt = sendMail(dataObjList);

 return "Inserted Successfully";

 } else {

 return "Inserted failure";

 }

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/ordersummary") annotation sets the base path to the resource endpoints
in the controller as /ordersummary.

@RequestMapping(method = RequestMethod.POST) is used to map HTTP POST request to the
mapped controller methods. We used it to send order details, product details and customer details.

@RequestBody: This annotation takes care of binding the web request body to the method
parameter with the help of the registered HttpMessageConverters. So, when you make a POST
request to the “/ordersummary” URL with a Post JSON body, the HttpMessageConverters converts
the JSON request body into a Post object and passes it to the insertOrder method.

Inside order method is where you create the query to insert customer details, product details in the
ordersummary table and update product quantity in the product table.

The update method provided by JdbcTemplate can be used for insert, update, and delete
operations.

The SQL string “s” is used to perform a single insert operation. Here '?' means it acts as the
parameter which we need to pass while executing the query. Now to execute the query, we have
used the JdbcTemplate update() method, which takes the query as an argument, and other than the
query there are 4 values that correspond to 4 '?' respectively.

The SQL string “t” is used to update the product quantity by ID and pass the string to the update
method of JdbcTemplate. Note that the ID is only used to find the customer to be updated but the ID

112
E-Marketplace

itself is not updated.

 16. Generate Invoice & send via email

This method is used to send invoice via Gmail.

In the Projects window, Inside project file > source packages > com.spring.app. Open
SimpleController.java file and write the following code.

@CrossOrigin(origins = "*")

 @RequestMapping(value = "/sendmail", method = RequestMethod.POST)

 public String sendMail(List<Object[]> dataObjList) {

 // Recipient's email ID needs to be mentioned.

 String to = "";

 String OrderId = "";

 String OrderedDateTime = "";

 String Customername = "";

 String Customernumber = "";

 String Customeraddress = "";

 String Totalprice = "";

 // Sender's email ID needs to be mentioned

 String from = "indigrainmarketplace@gmail.com";

 final String username = "indigrainmarketplace@gmail.com";

113
E-Marketplace

 final String password = "qgcilfhiyxhviqvt";

 String HtmLFinal = "";

 String HtmlCntTableRow = "";

 for (int i = 0; i < dataObjList.size(); i++) {

 int sNo = i + 1;

 Object[] s = dataObjList.get(i);

 System.out.println("Object = " + s[0]);

 System.out.println("Object = " + s[1]);

 System.out.println("Object = " + s[2]);

 Totalprice = s[4].toString();

 OrderedDateTime = s[5].toString();

 to = s[9].toString();

 Customername = s[8].toString();

 Customernumber = s[10].toString();

 Customeraddress = s[11] + "," + s[12] + "," + s[13] + "," + s[14] +

"," + s[15].toString();

 OrderId = s[16].toString();

114
E-Marketplace

 HtmlCntTableRow += "<tr><td style='border: 1px solid #25a7e7; border-

collapse: collapse; text-align: center;'>" + sNo + "</td><td style='border: 1px

solid #25a7e7; border-collapse: collapse;'>" + s[0] + "</td><td style='border: 1px

solid #25a7e7; border-collapse: collapse; text-align: right;'>" + s[2] + "</td><td

style='border: 1px solid #25a7e7; border-collapse: collapse; text-align: right;'>"

+ s[1] + "₹</td></tr><tr>";

 }

 String htmlCnt1 = "<html>"

 + "<head>"

 + "</head>"

 + "<body>"

 + "<h1 style='color: #25a7e7; text-align:

center;'>Invoice</h1><div><table style='width:

100%'><tr><td><table><tr><td>Bill To:</td></tr><tr><td>Order ID: " +

OrderId + "</td></tr><tr><td>Ordered Date & Time: " + OrderedDateTime +

"</td></tr><tr><td>Customer Name: " + Customername + "</td></tr><tr><td>Contact

Number: " + Customernumber + "</td></tr><tr><td>Address: " + Customeraddress +

"</td></tr><tr><td>Email ID: " + to + "</td></tr><tr><th></tr></table></td><td

align='right'><img width='60'

src=\"https://lh3.googleusercontent.com/PmbcUFjN8f9K8_5fR-6M-m8K-

uHjNqeEI69X_arC2kVkqQcJeDzd5bhhVHJ3gv5mX3Qyc0OhZYECu_Vpx-CuHYr3Hdebey5t01QJstD-

04q8ge7uynwkFcDQWhbhhOKxZ4dnluJwsGaGUsVXfJFzBXGjvBgV_6yscWIdphFjdCCqFCxa3QWtP3wZll

6pk548FN55wPFjEirszVgsfMDxlI4Qin7VeYotLaikRfDMjiApqm3ifCFGymeWMAKvZaKrC2Km8SMGMhpS

xRS9yi_zvguEfxTavCKL10EbFi2HbbGdBmkaoc9wjuAU7Zam0Uu-FsN6prMCNVVdORz0PaX-

pH1YJEHco3ssQ_LsHRG5HC5K09OayzWD5KAiINY-dlt1JB6ny50VQha778ZxT7Uz-

sLZcXG4W11u8iquzLb2JSmvp44RyiPGfuT2fDLGybYG2AP67cH9Azhq3P_6biCckbzJLt9Mo-

115
E-Marketplace

61yygpi1i4eg0NiIqoTlEo4N8ytEI2-

tFbEaRBfjQKYnW0eAmGh2oY7j3wLYwYENIYkUiUKmnp5AJzkd5nuEIn1ddRyowULr3ducnonywGSDkuHqQ

ofgUetupW1La7B9sWxUSgdEbSCP8Vxf9jKo_Nx13p4aiydZawcqW7tidFkpopf3AoFDUkUfsWKaX4Wmh7g

HUfrd6V8uDKw58u1DlaDsbCfvmvFkq3qkJndy_OSW_dHiSF5fP3IPB_RBY9bJQWwsuJwvoaf-

oCUIf2h5URUSSLkh7e=w285-h358-no?authuser=0\" />
Indigrain</td></tr></table></div>
<table style='width: 100%; border:

1px solid #25a7e7; border-collapse: collapse;'><tr><td style='border: 1px solid

#25a7e7; border-collapse: collapse; background-color: #25a7e7; color: white; text-

align: center;'>Item #</td><td style='border: 1px solid #25a7e7; border-collapse:

collapse; background-color: #25a7e7; color: white; text-align: center;'>Product

Name</td><td style='border: 1px solid #25a7e7; border-collapse: collapse;

background-color: #25a7e7; color: white; text-align: center;'>Quantity</td><td

style='border: 1px solid #25a7e7; border-collapse: collapse; background-color:

#25a7e7; color: white; text-align: center;'>Total Price</td></tr>";

 String htmlCnt2 = "<tr><td colspan=\"3\" style='border: 1px solid #25a7e7;

border-collapse: collapse; text-align: right;'>Bill Amount</td><td

style='text-align: right;'>" + Totalprice + "₹</td></tr></table>"

 + "</body>"

 + "</html>";

 HtmLFinal = htmlCnt1 + HtmlCntTableRow + htmlCnt2;

 Properties prop = new Properties();

 prop.put("mail.smtp.host", "smtp.gmail.com");

 prop.put("mail.smtp.port", "465");

 prop.put("mail.smtp.auth", "true");

116
E-Marketplace

 prop.put("mail.smtp.socketFactory.port", "465");

 prop.put("mail.smtp.socketFactory.class",

"javax.net.ssl.SSLSocketFactory");

 Session session = Session.getInstance(prop,

 new javax.mail.Authenticator() {

 @Override

 protected PasswordAuthentication getPasswordAuthentication() {

 return new PasswordAuthentication(username, password);

 }

 });

 try {

 // Create a default MimeMessage object.

 Message message = new MimeMessage(session);

 // Set From: header field of the header.

 message.setFrom(new InternetAddress(from));

 // Set To: header field of the header.

 message.setRecipients(Message.RecipientType.TO,

117
E-Marketplace

 InternetAddress.parse(to));

 // Set Subject: header field

 message.setSubject("Invoice");

 // Send the actual HTML message, as big as you like

 message.setContent(HtmLFinal, "text/html");

 // Send message

 Transport.send(message);

 System.out.println("Sent message successfully....");

 } catch (MessagingException e) {

 throw new RuntimeException(e);

 }

 return "Invoice Generated";

 }

@RestController: This annotation marks the SimpleController as an HTTP request handler and
allows Spring to recognize it as a RESTful service.

@RequestMapping("/sendmail") annotation sets the base path to the resource endpoints in the
controller as /sendmail.

@RequestMapping(method = RequestMethod.POST is used to map HTTP POST request to the

118
E-Marketplace

mapped controller methods. We used it to send invoice via mail to customer.

Configure pom.xml.

Open pom.xml file

For handling the web-request and doing CRUD operations with PostgreSQL database, we
need the supporting of 3 Spring Boot dependencies: spring-boot-starter-web, spring-
boot-starter-data-jdbc, postgresqldb and spring-boot-starter-mail

Configure Spring Data source.

application. Properties is used to add the Spring Boot application's configurations such
as: database configuration (PostgreSQL), server configuration.

In the Projects window, Inside project file > other sources > src/main/resources > default
package. Open application. properties file.

Since we’re using PostgreSQL as our database, we need to configure the database URL,
username, and password so that Spring can establish a connection with the database on
startup.

spring.jpa.hibernate.ddl-auto=none

spring.datasource.url=jdbc:postgresql://localhost:5432/postgres

spring.datasource.username=postgres

spring.datasource.password=chonar@13

spring.mvc.hiddenmethod.filter.enabled=true

spring.datasource.hikari.maximum-pool-size=2

Run the Spring Boot Project file.

Right-click on the project file and click on “Clean and Build”.

 Installing Resin

 1. Go to link. Click on Download for Resin 4.0
 2. Unzip resin-4.0.x.zip

 3. Define the environment variable RESIN_HOME to the location of Resin, for

https://caucho.com/products/resin/download/gpl

119
E-Marketplace

example C:\Users\RP\Downloads\resin

 4. Follow the similar process like setting Environment Variables in Java to set
RESIN_HOME

 5. Execute resin.exe or run-in command prompt

resin/bin ./start.bat;
 tail -f ../log/jvm-app-0.log;

Note: The resin server listens at port 8080 in the default configuration.
 To fix 8080 ports already in use

Step 1: Open command prompt as administrator and find the process id that is using
the port 8080.

 netstat -ano | findstr 8080
 Step 2: Kill the process using process id in above result.
 taskkill /F /pid 1088

Deploying war file in the resin.

 1. Go to spring boot project folder -> inside target folder you will find emarker.war file
 2. Copy the .war file (E.g.: emarket.war) -> inside resin folder -> webapps folder
 3. Start the resin server
 Execute resin.exe
 or run-in command prompt

 resin/bin ./start.bat;
 tail -f ../log/jvm-app-0.log;

 4. Your .war file will be extracted automatically to a folder that has the same name
(without extension) (E.g.: webapp)

120
E-Marketplace

Creating a database for E-marketplace in PostgreSQL.

 1. Create a e market database and Create merchant, customer, category,
product, and order summary table, populate the table with data, retrieve and store
data for future use, or delete if needed

 2. Database Design

 3. Downloading PostgreSQL Installer for Windows

Go to link. Download PostgreSQL

 4. Installing the PostgreSQL installer

After downloading the installer double click on it and follow the below steps:

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

121
E-Marketplace

Step 1: Click the Next button.

Step 2: Choose the installation folder, where you want PostgreSQL to be installed,
and click on Next.

122
E-Marketplace

Step 3: Select the components as per your requirement to install and click the Next
button.

Step 4: Select the database directory where you want to store the data and click on
Next.

123
E-Marketplace

Step 5: Set the password for the database superuser (Postgres)

Step 6: Set the port for PostgreSQL. Make sure that no other applications are using
this port. If unsure leave it to its default (5432) and click on Next.

124
E-Marketplace

Step 7: Choose the default locale used by the database and click the Next button.

Step 8: Click the Next button to start the installation.

125
E-Marketplace

Wait for the installation to complete, it might take a few minutes.

Step 9: Click the Finish button to complete the PostgreSQL installation.

126
E-Marketplace

 4. When you install PostgreSQL, pgAdmin is installed. Start pgAdmin from your
start menu.

 5. Create Server

Go to the “Dashboard” tab. In the “Quick Link” section, click “Add New Server” to add
a new connection.

 6. In the General tab, enter the name for this server.

 7. Select the “Connection” tab in the “Create-Server” window.

https://docs.bitnami.com/images/img/components/postgresql/config-pgadmin-1.png

127
E-Marketplace

In the default PostgreSQL setup, the administrator user is postgres with an empty
password. In the connection tab be sure to have the host set to localhost.
Click Save afterwards.

 8. Create New User

First, connect to the database by double-clicking on the instance name you created
above.

Right click on Login/Group Roles, select Create and click on Login/Group Roles…
for creating new user.

128
E-Marketplace

The following Create dialog box will appear. Type ‘emarket in Name field as user’s
name and click on Definition tab.

Type login password for the user admin and click on Privileges tab. If you want to
create user for limited time, then set the Account expires data and time value.

129
E-Marketplace

To set all permissions to emarket user make all options to ‘Yes’. Click ‘Save’ button
to create the user.

‘emarket user entry will be shown in Login/Group Roles section.

130
E-Marketplace

 9. Create a table.

Left click on the Database section and select the required database, in this case the
name of database is postgres

10. PostgreSQL- Database Selection
Now left click on the database and then select the Schemas section using the left
mouse button. In this case we left click on postgres

131
E-Marketplace

11. PostgreSQL- Selecting Schemas
Now right click on the public section to select the Create option from the drop-down
menu.

12. PostgreSQL- Create Table
Create a table named customer:
Type the following query in the Query editor panel.

CREATE TABLE IF NOT EXISTS public.customer

(

132
E-Marketplace

 cid serial,

 cname text COLLATE pg_catalog."default" NOT NULL,

 cemail text COLLATE pg_catalog."default" NOT NULL,

 cphone text COLLATE pg_catalog."default",

 cpassword text COLLATE pg_catalog."default" NOT NULL,

 caddressno text COLLATE pg_catalog."default",

 carea text COLLATE pg_catalog."default",

 ccity text COLLATE pg_catalog."default",

 cstate text COLLATE pg_catalog."default",

 cpincode text COLLATE pg_catalog."default",

 CONSTRAINT cid PRIMARY KEY (cid),

 CONSTRAINT uniqemail UNIQUE (cemail),

 CONSTRAINT uniqmobile UNIQUE (cphone)

)

In the admin table “cid”, “cname”, “cemail”, “cphone”, “cpassword”, “caddressno”,
“carea”, “ccity”, “cstate”, and “cpincode” represents the name of the columns. INT
and TEXT are data types and NOT NULL defines the column constraint, NOT NULL
means no acceptance of NULL values in that column. Here, “cid” is defined as the
Primary Key Column. The primary key column is used for distinguishing a unique
row in a table. AUTO_INCREMENT to create a column whose value can be set
automatically from a simple counter. You can only use AUTO_INCREMENT on a
column with an integer type. The column must be a key, and there can only be one
AUTO_INCREMENT column in a table. UNIQUE to specify that all values in the
cstemail column must be distinct from each other. For UNIQUE indexes, you can
specify a name for the constraint, using the CONSTRAINT keyword. That name will
be used in error messages.

After entering query, select the Execute/Refresh icon from the toolbar.

13. Create a table named merchant:

Type the following query in the Query editor panel.

133
E-Marketplace

CREATE TABLE IF NOT EXISTS public.merchant

(

 mid serial,

 mname text COLLATE pg_catalog."default",

 mphone text COLLATE pg_catalog."default",

 memail text COLLATE pg_catalog."default" NOT NULL,

 maddress text COLLATE pg_catalog."default",

 mgstno text COLLATE pg_catalog."default",

 mpassword text COLLATE pg_catalog."default" NOT NULL,

 CONSTRAINT mid PRIMARY KEY (mid)

)

In the merchant table “mid”, “mname”, “mpassword”, “memail”, “maddress”,
“mgstno”, and “mpassword” represents the name of the columns. INT and TEXT are
data types and NOT NULL defines the column constraint, NOT NULL means no
acceptance of NULL values in that column. Here, “mid” is defined as the Primary Key
Column. The primary key column is used for distinguishing a unique row in a table.
AUTO_INCREMENT to create a column whose value can be set automatically from
a simple counter. You can only use AUTO_INCREMENT on a column with an integer
type. The column must be a key, and there can only be one AUTO_INCREMENT
column in a table.

After entering query, select the Execute/Refresh icon from the toolbar.

14. Create a table named category:

Type the following query in the Query editor panel.

CREATE TABLE IF NOT EXISTS public.category

(

 catid serial,

 catcategoryname text COLLATE pg_catalog."default" NOT NULL,

134
E-Marketplace

 catcategoryimage text COLLATE pg_catalog."default" NOT NULL,

 CONSTRAINT catid PRIMARY KEY (catid)

In the category table “catid”, “catcategoryname” and “catcategoryimage” represents
the name of the columns. INT and TEXT are data types and NOT NULL defines the
column constraint, NOT NULL means no acceptance of NULL values in that column.
Here, “mid” is defined as the Primary Key Column. The primary key column is used
for distinguishing a unique row in a table. AUTO_INCREMENT to create a column
whose value can be set automatically from a simple counter. You can only use
AUTO_INCREMENT on a column with an integer type. The column must be a key,
and there can only be one AUTO_INCREMENT column in a table.

After entering query, select the Execute/Refresh icon from the toolbar.

15. Create a table named product:

Type the following query in the Query editor panel.

CREATE TABLE IF NOT EXISTS public.product

(

 proid serial,

 proname text COLLATE pg_catalog."default" NOT NULL,

 prodescription text COLLATE pg_catalog."default" NOT NULL,

 procategory text COLLATE pg_catalog."default" NOT NULL,

 proimage text COLLATE pg_catalog."default" NOT NULL,

 proprice text COLLATE pg_catalog."default" NOT NULL,

 proquantity text COLLATE pg_catalog."default" NOT NULL,

 proinitialquantity text COLLATE pg_catalog."default",

 CONSTRAINT proid PRIMARY KEY (proid)

)ere can only be one AUTO_INCREMENT column in a table.

135
E-Marketplace

In the product table “proid”, “proname”, “prodescription”, “procategory”, “proimage”,
“proprice”, “proquantity”, and “proinitialquantity” represents the name of the columns.
INT and TEXT are data types and NOT NULL defines the column constraint, NOT
NULL means no acceptance of NULL values in that column. Here, “proid” is defined
as the Primary Key Column. The primary key column is used for distinguishing a
unique row in a table. AUTO_INCREMENT to create a column whose value can be
set automatically from a simple counter. You can only use AUTO_INCREMENT on a
column with an integer type. The column must be a key, and there can only be one
AUTO_INCREMENT column in a table.

After entering query, select the Execute/Refresh icon from the toolbar.

16. Create a table named ordersummary:

Type the following query in the Query editor panel.

CREATE TABLE IF NOT EXISTS public.ordersummary

(

 oscid bigint,

 osproductquantity text COLLATE pg_catalog."default",

 osproductname text COLLATE pg_catalog."default",

 osproductprice text COLLATE pg_catalog."default",

 ostotalprice text COLLATE pg_catalog."default",

 osordereddatetime text COLLATE pg_catalog."default",

 ospid bigint,

 osid serial,

 oscustomername text COLLATE pg_catalog."default",

 oscustomeremail text COLLATE pg_catalog."default",

 oscustomerphone text COLLATE pg_catalog."default",

 oscustomeraddressno text COLLATE pg_catalog."default",

 oscustomerarea text COLLATE pg_catalog."default",

136
E-Marketplace

 oscustomercity text COLLATE pg_catalog."default",

 oscustomerstate text COLLATE pg_catalog."default",

 oscustomerpincode text COLLATE pg_catalog."default",

 osproductimage text COLLATE pg_catalog."default",

 osproductdescription text COLLATE pg_catalog."default",

 osrefid bigint,

 CONSTRAINT osid PRIMARY KEY (osid)

)

In the admin table “osid”, “ospid”, “osproductname”, “osproductdescription”,
“osproductprice”, “osproductimage”, “osproductquantity”, “ostotalprice”,
“osordereddatetime”, “oscid”, “oscustomername”, “oscustomeremail”,
“oscustomerphone”, “oscustomeraddressno”, “oscustomerarea”, “oscustomercity,
“oscustomerstate”, “oscustomerpincode”, and “osrefid” represents the name of the
columns. INT, BIGINT, and TEXT are data types and NOT NULL defines the column
constraint, NOT NULL means no acceptance of NULL values in that column. Here,
“osid”, “oscid” are defined as the Primary Key Column. The primary key column is
used for distinguishing a unique row in a table. AUTO_INCREMENT to create a
column whose value can be set automatically from a simple counter. You can only
use AUTO_INCREMENT on a column with an integer type. The column must be a
key, and there can only be one AUTO_INCREMENT column in a table.

After entering query, select the Execute/Refresh icon from the toolbar.

17. Insert a record into the merchant table.

Type the following query in the Query editor panel.

INSERT INTO merchant (mname, mphone, memail, maddress, mgstno, mpassword)
VALUES ('indigrain', '1234567890', 'indigrain@gmail.com', 'chennai', '9876543210',
'indi@123');

The ‘merchant is an already created table. Now we are adding a new row of records
under the respective columns with the corresponding values: 'indigrain',
'1234567890', 'indigrain@gmail.com', 'chennai', '9876543210', 'indi@123'.

After entering query, select the Execute/Refresh icon from the toolbar.

137
E-Marketplace

Testing the backend with the mobile application.

Note: Make sure your computer and phone are on the same Wi-Fi network.

1. Change the api call URL from http://121.242.232.216:7070/emarket/ to
http://<Wifi ipaddress>:8080/emarket/

In flutter project file ->

• Inside lib/Screen/api/api.dart

• Inside lib/Screen/category_management/api_service.dart

• Inside lib/Screen/customerhome/ApiServiceProjectDetail.dart

• Inside lib/Screen/product_management/api_service.dart

• Inside lib/Screen/ordersummary/ordersummary.dart

Example: (http:// 192.168.68.27:8080/emarket/)

2. Start the resin server.

Execute resin.exe

or run-in command prompt

resin/bin ./start.bat;
tail -f ../log/jvm-app-0.log;

3. Perform functional tests and validate if all the functionalities work according
to requirements.

1. Merchant Login

1. Add, View, Remove Categories

2. Add, View, Edit, Remove Products

3. Check Incoming/New Orders

2. Customer Registration

http://121.242.232.216:7070/emarket/

138
E-Marketplace

3. Customer Login

1. View Categories

2. View Products

3. Add to Cart

a. Add/ Remove Items

b. Increase/ Decrease Quantity

c. Quantity Check

4. Update Profile, Address

5. Make payment using different payment modes.

6. Check history of orders

	Installing Flutter and Android Studio:
	1.System requirements:

	2.Get the Flutter SDK:
	3.Update your path.

	4.Run flutter doctor.
	5.Install Android Studio
	7.Set up the Android emulator.
	8.Agree to Android Licenses

	9.Install the Flutter and Dart plugins.
	Mac
	Linux or Windows

	10.Configure Android Studio for Flutter Development:
	11.Running the application:

