

Build an autonomous robot that can navigate a maze 1

Build an autonomous robot that can navigate a maze!

Build an autonomous robot that can navigate a maze 2

 Index

Prerequisites

Aim

Components

Part 1: Experimenting with the Sensors & Motors

1) IR Sensors

2) Ultrasonic Sensors

3) DC Motors

Part 2: Build a Maze Solving Robot

- Flowchart of the Program

- Encoding Each Step

- Algorithm of the final code

- Implementation

Challenges

Build an autonomous robot that can navigate a maze 3

Prerequisites

Topic Resources

Rolling Display Project Build Club website

Understanding Sensors & Actuators Project Videos

Aim

Build a Micro-mouse robot equipped with sensors and wheels which can autonomously

navigate and solve a maze.

Components (*Provided in kits sent by Build Lab - IITM)

1. Dexter board

2. IR Sensors - 4

3. Ultrasonic sensors - 3

4. L298 Motor driver

5. 2 DC Motors

6. 2 Wheels

7. Caster wheel

8. Metal Chassis

9. Acrylic sheet cutouts - 8 pieces

10. Screws & nuts

11. Screwdriver

12. Superglue

13. Double sided tape

14. Mini Breadboard (170 point)

15. Jumper wires (male to female - 9 nos.)

16. Two 3.6V NMC cells

https://respark.iitm.ac.in/build-club_project_1/

Build an autonomous robot that can navigate a maze 4

17. 2 USB cables - 1 for powering the Dexter and the other for uploading code from

laptop to Dexter.

Build an autonomous robot that can navigate a maze 5

Part 1: Experimenting with the Sensors & Motors

IR Sensors

Assembly:

Take the acrylic cutouts for the IR sensors and superglue them to make the

following shape:

Build an autonomous robot that can navigate a maze 6

Next, using 4 sets of screws & nuts, fix the 4 IR sensors on the setup as shown:

Build an autonomous robot that can navigate a maze 7

Connections:

NOTE: Before starting the connections, verify using a multimeter that all the

jumper wires are working. Also ensure that the connections are strong, else the

setup may not work. Make sure the connections are connected at respective

pins.

Take 12 female-to-male jumper wires and connect them to the pins (OUT, GND, VCC) of

the 4 IR sensors. Connect the other ends as per the below connections:

 Important

Sensor’s Pin Connect to...

Left sensor Left_centre
sensor

Right_centre
sensor

Right sensor

OUT PA6 PA7 PC6 PC7

GND Breadboard
Row R2

Breadboard
Row R2

Breadboard
Row R2

Breadboard
Row R2

VCC Breadboard
Row R1

Breadboard
Row R1

Breadboard
Row R1

Breadboard
Row R1

Build an autonomous robot that can navigate a maze 8

Take 2 male-to-male jumper wires and connect them

as follows:

- +5V of Dexter to Row R1 of breadboard

- GND of Dexter to Row R2 of breadboard

Using 2 male-to-male jumpers, connect Row L1 to

Row R1 and Row L2 to Row R2. This is known as

‘shorting’.

Your final circuit should look like this:

Once done, connect the Dexter to your computer using the two USB cables.

Build an autonomous robot that can navigate a maze 9

A green LED should glow on each IR sensor if the connections are correct. On hovering

your hand over any of the sensors, another green LED should glow, indicating that an

object is detected by the sensor.

Software & Testing:

Downloads & Setup

1) To download and install the STM32 Cube IDE (If you haven’t already), follow the

steps given in the Dexter Base Document, part 2.

2) Next, download the Project Workspace file ‘Maze_Robot.zip’ given in the project

page on the Build Club website.

3) In the C: drive on your computer, navigate to the ‘Workspace’ folder created in

previous Build projects. Inside it, create a new folder named ‘Maze_Robot’.

4) Now, as done in every project: i) Launch the STM IDE, ii) Select the Maze_Robot

folder as workspace, iii) Import the Maze_Robot.zip file and iv) Navigate to app.c.

Code

Build an autonomous robot that can navigate a maze 10

There are 4 code functions for the IR sensors, one for each sensor. The functions return a ‘0’

if an object is detected and a ‘1’ otherwise.

Read_L_IR (); // Reads the Left IR sensor

Read_LC_IR (); // Reads the Left Centre IR sensor

Read_RC_IR (); // Reads the Right Centre IR sensor

Read_R_IR (); // Reads the Right IR sensor

Eg. To store the status of Left IR sensor, you can save it in an int variable as shown:

int L_IR_sensor_value = Read_L_IR();

Testing

To test code or check whether devices are working, we use the ‘Debug’ mode in the STM32

IDE. Here, we will learn how to test and debug our IR sensor code.

In app.c, above the App() function, create 4 int variables named L_IR_sensor_value,

LC_IR_sensor_value, RC_IR_sensor_value and R_IR_sensor_value.

Eg. int L_IR_sensor_value;

Now inside the App() function, create an infinite while loop like we have used in previous

projects. Inside it, set the values of the variables created above to the values returned by the

‘read IR’ functions.

Eg. L_IR_sensor_value = Read_L_IR ();

Do similarly for the remaining 3 IR sensors.

Build an autonomous robot that can navigate a maze 11

Click the Window tab on the top of the IDE and navigate to Show View > Other > Debug >

Live Expressions and hit enter.

Build an autonomous robot that can navigate a maze 12

Build an autonomous robot that can navigate a maze 13

In the Live Expressions tab that opens, click Add new expression and paste the name of the

variable L_IR_sensor_value. Do likewise for the remaining 3 variables.

Build an autonomous robot that can navigate a maze 14

Once done, hit the Build button on the IDE and ensure your code is error-free. Now, instead

of clicking the Run button, we will be clicking the Debug button. After clicking Debug, if you

receive a prompt asking to ‘Switch perspective’, click ‘Switch’.

Once the code has successfully uploaded to the Dexter, click the Resume button on the IDE

to start Debugging. You will now be able to track in real-time the values of the IR sensors in

the Live Expressions tab.

Build an autonomous robot that can navigate a maze 15

Tasks:

1) Put an object in front of any one of the sensors until the 2nd green LED on it turns ON.

In the Live Expressions tab of the IDE, what value does the reading for that sensor

show? Now remove the object - what is the value of that variable now? You will notice

that when an object is detected, a ‘0’ is shown and when removed, it changes to ‘1’.

Test for all the four sensors and check if this same pattern is observed.

2) Take a white sheet of paper and see to what distance the sensor can detect it. Now

stick a strip of non-reflective black tape or black paper in the centre of the sheet.

Keeping an eye on the Live Expressions tab, hover this sheet from one end to the other.

What did you notice when the black region passed over the sensor? Is the sensor able

to sense it? The sensor doesn't detect the black colour because it is non-reflective. You

may have to tune the sensor's potentiometer with a screwdriver to ensure this

happens.

3) Gather small objects of different colours and reflectivity. Test whether the sensor is

able to sense them and to what maximum distance.

Build an autonomous robot that can navigate a maze 16

Ultrasonic Sensors

Assembly:

Take the acrylic cutouts for the Ultrasonic sensor. Using 6 sets of screws & nuts

totally, fix the pieces to get the below shape:

Next, fit the 3 Ultrasonic sensors into the slots of the acrylic cutouts firmly.

Build an autonomous robot that can navigate a maze 17

Connections:

Take 16 female-to-male jumper wires and connect them to the pins (OUT, GND, VCC) of

the 4 IR sensors. Connect the other ends as per the below connections:

 Important

Sensor’s Pin Connect to...

Left sensor Front sensor Right sensor

GND Breadboard Row L2 Breadboard Row L2 Breadboard Row L2

ECHO PB15 PA9 PA8

TRIG PB9 PA10 PB14

VCC Breadboard Row L1 Breadboard Row L1 Breadboard Row L1

Take 2 male-to-male jumper wires and connect them as follows:

- +5V of Dexter to Row L1 of breadboard

- GND of Dexter to Row L2 of breadboard

Build an autonomous robot that can navigate a maze 18

Your final circuit should look like this:

Once done, connect the Dexter to your computer using the two USB cables.

Build an autonomous robot that can navigate a maze 19

Software & Testing:

Code

There are 3 code functions for the Ultrasonic sensors, one for each sensor. The functions

return the distance in cm from an object as a decimal value.

Read_L_ultrasonic(); // Reads the Left Ultrasonic sensor

Read_F_ultrasonic(); // Reads the Front Ultrasonic sensor

Read_R_ultrasonic(); // Reads the Right Ultrasonic sensor

Eg. To store the value of Front Ultrasonic sensor, you can assign it to a float variable as shown:

float F_US_sensor_value = Read_F_ultrasonic();

Testing

Like we did for the IR sensors, create 3 float variables named L_US_sensor_value,

F_US_sensor_value and R_US_sensor_value.

Eg. float F_US_sensor_value;

Open the Live Expressions tab and add these variables there. Once again, create an infinite

while loop inside the App() function and set the values of the variables created above to the

values returned by the ‘read ultrasonic’ functions.

Eg. F_US_sensor_value = Read_F_ultrasonic();

Build an autonomous robot that can navigate a maze 20

Build your code and then hit Debug. The values you will now see in the Live Expressions tab

are the distance in cm to the nearest objects/walls for each sensor.

NOTE: The sensors work accurately only when they are stationary and not shaking, so

keep the setup on a stable flat surface.

Tasks

1) Place a 30cm ruler on the floor perpendicular to a wall so that the 0cm mark

touches the wall. Keep any one Ultrasonic sensor at the 10cm mark and verify if

the reading in Live Expressions is also approximately 10cm. Take 3 readings for

each sensor (say at 20cm, 30cm, 17cm) to verify that they are working properly.

If the distance readings for the sensors are not accurate, go to the top of the

app.c file. In the Calibration Values section, you will find a variable called

ultrasonic_calibration set to the value 53. Adjust this value until the readings

are accurate (Note: You must test with different distances to ensure accuracy).

2) Keep one of the Ultrasonic sensors at the 20cm mark. Now slowly keep moving

the sensor backwards. Note at what distance the readings lose their accuracy.

This is the sensor’s maximum range of functioning.

Build an autonomous robot that can navigate a maze 21

DC Motors

Assembly:

Take the acrylic piece for the L298N motor driver and fix it onto the acrylic sheet

using screws. Ensure that the orientation of the piece is as shown in figure.

Build an autonomous robot that can navigate a maze 22

Screw the L298N Motor driver board onto it in the correct orientation using the

4 sets of screws & nuts. Fit the ultrasonic sensors back into their slots at the

front.

From the components kit provided, take

1 NMC cell and insert it into the bottom

battery slot of the Dexter board. The

Negative terminal should be on the side

of the ‘BT3’ label

and the Positive

terminal on the

side of the ‘BT4’

label.

In the remaining 4 holes of the acrylic sheet, fit the 4 long screws and fasten them

with the spacers and nuts on the other end. Peel the covering of the double-sided

tape under the mini-breadboard and stick the breadboard between the Motor

driver and screw mount at the rear. Now remove the nuts from the 4 long screws

mounted on the acrylic sheet and fit them into the holes of the Dexter board.

Build an autonomous robot that can navigate a maze 23

Retighten the nuts from the topside of the board, so that the Dexter is firmly

fitted.

From the 2 DC Motors, remove the black plastic nuts, fit them through the slots

in the metal chassis and refit the nut tightly on the other end. Insert the wheels

into the ends of the motors and fix them by tightening the wheel’s screw into the

rotor hole. Make sure that the motors and wheels are aligned exactly straight.

Note that the Micro-mouse robot won't move accurately even if one of the

motors / wheels is slightly tilted. Finally, fit the caster wheel into its slot in the

front side and fix it to the chassis using 3 screws & nuts.

Build an autonomous robot that can navigate a maze 24

The IR sensor setup should be fixed using double-sided tape to the underside

of the chassis, in front of the motors as shown.

Fix the setup mounted on the acrylic sheet onto the metal chassis using multiple

strips of double-sided tape. Make sure it is attached firmly and that the

orientation of the chassis is correct.

Build an autonomous robot that can navigate a maze 25

Connections:

Connect the red wire of the left motor to OUT1 and the black wire to OUT2, black

wire of the right motor to OUT3 and red wire to OUT4. Take 2 male-to-male

jumpers and connect the +12V and GND terminals of the driver to VIN and GND

pins of the Dexter. You will need a screwdriver to loosen the terminal screws,

insert the wires/jumpers and re-tighten the screws.

Build an autonomous robot that can navigate a maze 26

Take 6 female-to-male jumper wires and connect them as follows:

 Important

- ENA to PA0 of Dexter

- N1 to PA5 of Dexter

- IN2 to PA4 of Dexter

- IN3 to PC2 of Dexter

- IN4 to PA2 of Dexter

- ENB to PA1 of Dexter

Use tape or cable ties to prevent the wires from interfering with the wheels

or getting tangled.

Build an autonomous robot that can navigate a maze 27

Final circuit diagram for the DC Motors:

Complete the jumper connections for the DC motors, IR sensors and

Ultrasonic sensors as done earlier. Use tape or cable ties to bunch the jumper

wires and prevent them from dangling around.

WARNING: Make sure that each and every jumper connection is correct,

most importantly for the VCC and GND connections. If even one is incorrect,

there are high chances that the components will get damaged.

Build an autonomous robot that can navigate a maze 28

The Micro-mouse robot assembly is now complete!

Software & Testing:

From now on, follow this procedure to test or run any code on the Micro-mouse Robot:

1) Take a small flat object like a plastic/cardboard box on which you can safely place

your Micro-mouse such that it is rested safely but its wheels don’t touch the

ground.

2) Connect the Dexter to your computer using the two USB cables. Run or debug the

code you want to run onto the Robot.

Build an autonomous robot that can navigate a maze 29

3) Once the robot is working as desired, remove the 2 USB cables. Insert the 2nd

NMC cell into the top side battery slot of the Dexter board. Its Negative terminal

should be connected to the side having -ve label (BT1) and Positive to +ve (BT2).

BE VERY CAREFUL WITH THIS. Wrong orientation can cause permanent damage

to the board and components.

The Micro-mouse can now be placed on the floor to move.

NOTE: It is possible that the cells are low on charge and this will affect the Micro-

mouse’s performance. To charge the NMC cells, follow these steps:

How to charge the NMC cells

1) Remove the top NMC cell from the Dexter. The bottom one can remain

mounted.

2) In the IDE, remove or comment out any code inside the App() function.

3) Connect the Dexter to the computer using the 2 USB cables and Run the

blank code. This will prevent any connected actuator or sensor from draining

power.

4) Now insert the 2nd NMC cell back into the top slot. A red LED on the Dexter

will now start glowing, indicating that the cells are charging. The cells

together will take around <Insert> hrs to charge from empty and once fully

charged the LED indicator will <Insert>. The USB cable for uploading code

can now be removed but the power cable is necessary to charge the cell. The

computer must also remain ON to charge the cells.

Code functions

Below are the functions to control the DC motors of the Micro-mouse.

Build an autonomous robot that can navigate a maze 30

1) Motor_init(motor);

This function Initialises the motor specified. It must be called compulsorily for both motors,

for them to work.

- motor input can have 2 values, for each motor - Motor_L or Motor_R

Eg. To initialise the Left DC motor: Motor_init(Motor_L);

2) Motor_set_dir(motor, dir);

This function sets the direction of rotation of the motor specified

- dir can have 2 values - forward or backward

Eg. To set direction of Right DC motor to forward:

Motor_set_dir(Motor_R, forward);

3) Motor_set_speed(motor, speed);

This function sets the speed of rotation of the motor specified

- speed can have values ranging from 0 to 100

Eg. To set speed of Right DC motor to Forward:

Motor_set_speed(Motor_R, 100);

4) Motor_run(motor, dir, speed);

This function runs the motor with specified direction and speed.

Eg. To run Left DC motor backward at speed=50:

Motor_run(Motor_L, backward, 50);

5) Motor_stop(motor);

Build an autonomous robot that can navigate a maze 31

This function stops the specified motor.

Eg. To stop the Left DC motor: Motor_stop(Motor_L);

6) Move_forward(speed);

This function moves the Micro-mouse forward at the specified speed.

- speed can have values ranging from 0 to 100

Eg. To move Micro-mouse forward at speed = 100:

Move_forward(100);

7) Move_backward(speed);

This function moves the Micro-mouse backward at the specified speed.

- speed can have values ranging from 0 to 100

Eg. To move Micro-mouse backward at speed = 80:

Move_backward(80);

8) Move(left motor dir, left motor speed, right motor dir, right motor speed);

This function moves the Micro-mouse with direction and speed specified for each motor

- dir can have 2 values - forward or backward

- speed can have values ranging from 0 to 100

Eg. To move Micro-mouse swerving slightly to the left:

Move(forward, 80, forward, 100);

9) Turn_left_degrees(degrees);

This function makes the Micro-mouse turn Left for specified degrees.

Build an autonomous robot that can navigate a maze 32

- degrees can have any positive degree value

Eg. To turn 90 degrees Left:

Turn_left_degrees(90);

10) Turn_right_degrees(degrees);

This function makes the Micro-mouse turn Right for specified degrees.

- degrees can have any positive degree value

Eg. To turn 90 degrees Right:

Turn_right_degrees(90);

Tasks

1) Initialise the Left DC Motor. Make it move forward at a speed of 100. Now

reverse its direction and set its speed to 80. Repeat for Right DC Motor too.

In case you notice that a wheel is rotating in the opposite direction than

expected, swap the wires connected to the OUT terminals of the L298N motor

driver board.

2) Write a code to make the Micro-mouse move forward for 5 seconds, stop for 2

seconds and then move backward for 5 seconds.

3) Make the Micro-mouse turn 90 left. You may notice that it doesn’t exactly turn

90. To calibrate this, go to the top of the app.c file. You will find a variable called

turn_calibration, tune its value until the accuracy of turning is accurate.

4) Write a code to make the Micro-mouse travel in the following shapes:

a) Square

b) Triangle

c) S shape

Build an autonomous robot that can navigate a maze 33

d) Circle of radius:

i) 30cm

ii) 50cm

You have now mastered how to drive the Micro-mouse!

Part 2: Build a Maze Solving Robot

In this part, we will build a program to make our Micro-mouse navigate and solve

a maze.

To write any complex program, the following procedure is helpful:

1) Write or draw out an algorithm / flowchart of steps that is required to

accomplish the task.

2) For each small step in the algorithm, write a code that executes that step.

3) Translate the algorithm / flowchart into code by replacing each step with the

code that accomplishes it.

4) Run the code. There will no doubt be some errors that you will face that you

did not expect. Locate the cause for each and fix them one by one. To

pinpoint the cause, examine across hardware, software and also the logic

you have implemented.

Flowchart of the Program

Build an autonomous robot that can navigate a maze 34

This flowchart diagram captures the flow of logical steps needed to implement the
Maze solving robot project. Once this is firmly understood, code can be easily
written to make the Micro-mouse follow these instructions.

Encoding Each Step

For the functions defined in the following pages, go to the Maze_Robot.c file in the IDE
and complete the skeleton of the functions inside.

Build an autonomous robot that can navigate a maze 35

The following pages explain how to write each code command in detail.

a) Start

Initialise the 2 DC Motors using the Motor_init() function. This only needs to
be done once, so it will be outside the while loop, in which the rest of the
program will be inside.

Build an autonomous robot that can navigate a maze 36

b) Check if Finish Line is reached

The Maze’s finish line is a wide strip of black tape. When the Micro-mouse
passes over it, all 4 IR sensors will detect ‘black’, ie. an absence of reflection.
We want our program to run only as long as the finish line is not reached.
Hence we will use a While loop, whose entry condition should be: ‘finish line
not detected’.

c) Stop

Stop both the DC Motors.

Build an autonomous robot that can navigate a maze 37

d) Check if dead-end

In case of a dead-end, all 3 Ultrasonic sensors - L, F, R - would sense a wall at
a close distance. If a dead-end is detected, the Micro-mouse would need to
halt immediately.

e) Move Forward

 If the coast is clear, move forward temporarily for 200ms.

f) Check if side walls are too close

This step uses the Ultrasonic sensors to check if the distance of the Micro-
mouse from the walls of the maze has gone below a critical value. There are
2 scenarios:

Build an autonomous robot that can navigate a maze 38

i) If the Micro-mouse comes less than 12cm close to a wall it must move
away - towards the opposite direction.

ii) If the Micro-mouse is in a corridor, with walls on either side, it must adjust
its position to the centre of the lane so that it is equidistant from both walls.

g) Check for Turnings:

A turning would come when there is a big opening on one side. This will be
detected when the Ultrasonic sensor reading for that side exceeds a certain

Build an autonomous robot that can navigate a maze 39

value. In such a case, the Micro-mouse would have to turn 90 towards that
side.

With this, one cycle of the program is completed. This cycle would have to
constantly repeat until the finish line is detected.

Algorithm of the final code

1) Initialise motors

2) While the finish line isn’t reached, keep doing the following:

- If not a dead-end, then:

- Move forward, followed by a small delay
- Stay away from side walls
- Check for turns

Implementation

Build an autonomous robot that can navigate a maze 40

1) With the help of code taught before for each step, implement the
above algorithm inside the App() function using the functions you have
completed in the Maze_Robot.c file.

2) Using sheets of thermocol fixed together using double-sided tape,
construct a maze for your Micro-mouse. Stick strips of black tape or
black paper across the finish line of the maze, one after the other to
form a black region of sufficient . This will serve as the finish line. Make
sure that it is non-reflective so that the IR sensors are able to
differentiate it from other colours.

3) Since the Maze setup dimensions will vary, you will have to adjust the
values of wall distances for checking dead-ends, wall avoidance and
accurate turnings, as per your Maze setup. Additionally, ensure turning
calibration and ultrasonic sensor calibration is accurate.

NOTE: When testing the Micro-mouse on the maze, first place it at the start of the
maze without the top NMC cell inserted. Once ready to begin, insert the cell and it
should start moving.

Hooray!

You have completed the Maze Solving Robot build!

Challenges

Build an autonomous robot that can navigate a maze 41

1) Build the fastest and most efficient Maze Solver!

Write programs for implementing various popular maze solving
algorithms such as:

a) Left-hand following
b) Right-hand following

 Explore more such algorithms on the internet. Eg. Wikipedia
Note down how many attempts it takes to solve the maze for
each algorithm. Which one was the best?

2) Build a Maze Learning Robot! Devise a program such that the
Micro-mouse is made to repeatedly attempt the maze until it is
solved. In the process of traversing the maze, the robot should
learn the maze and map it in its memory. Therefore, once fully
mapped, the Micro-mouse should be able to solve the maze
without making any mistake in a single attempt.

3) Build a Line Following Robot. On a white surface, Draw a path
using black tape. Using only the centre 2 IR sensors to detect the
black line, the Micro-mouse should be able to follow it. Note: The
black tape width must be less than the gap between the centre 2
IR sensors. Don’t create abrupt turns in the black line, else the
robot may not detect it.

https://en.wikipedia.org/wiki/Maze-solving_algorithm

