
Build an IoT Energy Meter!

Build an IoT Energy Meter 1



Index

Aim

Concept

Components

Connections

Software

- For Dexter

- ESP32 & Ubidots Setup

Real-world Application

Build an IoT Energy Meter 2



Aim

Build an IoT (Internet of Things) Energy Meter that measures electrical energy
consumption and other parameters in real-time and track this data remotely on
a web IoT platform.

Concept

What is IoT?

IoT is a system of interconnected computing devices that use internet protocols
to communicate and transfer data. This allows remote devices to communicate
amongst each other without the need for human involvement,

Build an IoT Energy Meter 3



How this project works

In this project, we use voltage and current sensors and using their values
calculate the power and energy consumption from everyday electrical circuits.
Since the sensors read the current, voltage values as analog wave signals, which
are harder to deal with, we use an Analog to Digital Converter (ADC) to convert
them to digital values - ie. numerical values. These values are received by the
Dexter board using the External Interrupt mechanism, like we have done for the
flow sensor in the IoT Water Meter project.

We then use these to compute parameters like power factor, power and energy
consumed. This time, we store the data in the Dexter’s on-board FRAMmemory,
using the I2C Protocol for reading and writing. .

Next, we transmit the data stored in the FRAM to the ESP32 Wifi module via the
UART interface. The ESP32 Wifi module then sends the data to a Ubidots cloud
server using an API. The energy consumption data can then be viewed in
real-time on the Ubidots web dashboard.

Build an IoT Energy Meter 4



Components (*Provided in kits sent by Build Lab - IITM)

1. Dexter board
2. ESP32 Wifi module
3. Breadboard
4. ZMPT101B 250V Voltage sensor
5. ACS712 20A Current sensor
6. 40W Bulb + 60W Bulb + holder
7. 2-pin plug with wiring
8. Jumper wires
9. 2 USB cables

Build an IoT Energy Meter 5



Connections

Caution: High Voltage Electrical Equipment. Do not touch the
circuit once it's connected to the power supply. For any changes
make sure the power supply is turned off.

Circuit Diagram

● NOTE: Before starting the connections, verify using a multimeter that
all the jumper wires are working. Also ensure that the connections are
strong, else the setup may not work.

Build an IoT Energy Meter 6



Detailed Connection Steps

Step 1

From the end of the 2-pin
plug cable, cut off 3 segments
of wires. With one segment,
connect the Voltage sensor’s
terminal labeled ‘L’ to any one
terminal of the Current
sensor. Using another wire
segment, connect the
remaining terminal of the
Current sensor to one
terminal of the Bulb holder. With the last wire segment, connect the other
terminal of the Bulb holder to the Voltage sensor’s terminal labeled ‘N’.
Connect the ends of the 2-pin plug cable also to the ‘L’ and ‘N’ terminals of
the Voltage sensor.

Build an IoT Energy Meter 7



Step 2

Take 3 female-to-male jumper wires and connect the pins of the ZMPT101B
voltage sensor as shown:

- VCC to Red line of breadboard
- OUT to PA0 of the Dexter
- GND to Blue line of breadboard

Take 3 more female-to-male jumpers to connect the ACS712 current
sensor:

- VCC to Red line of breadboard
- OUT to PA1 of the Dexter
- GND to Blue line of breadboard

Additionally, Take 2 more male-to-male jumper wires and connect them as
follows:

- +5V of Dexter to Red line of the breadboard
- GND of Dexter to Blue line of the breadboard

Build an IoT Energy Meter 8



Step 3

Take 3 male-to-female jumper wires and connect the pins (VIN, GND, RX0)
of the ESP32 Wifi module:

- VIN to Red line of the breadboard
- GND to Blue line of the breadboard
- RX0 to PC4 of the dexter board

Build an IoT Energy Meter 9



Software

For Dexter

Downloads & Installation

1) Download the Project Workspace file Dexter_Energy_Meter.zip’ given in
the project page on the Build Club website.

2) In the Workspace folder in your C: drive, create a new folder named
‘IoT_Energy_Meter’.

3) Now, as done in every project: i) Launch the STM IDE, ii) Select the
IoT_Energy_Meter folder as workspace, iii) Import the ZIP file
Dexter_Energy_Meter.zip, iv) Navigate to app.c

Build an IoT Energy Meter 10



NOTE: Before getting into the software for the project, it is important to
understand the concept behind it and get an overview of how the project works.
For this reason, we recommend revisiting the Concept section at the start of the
manual, where we explain how this project works.

Flowchart of the Code

This flowchart diagram captures the flow of logical steps needed to implement
the IoT Energy Meter project. Once this is firmly understood, code can be easily
written to implement the project and make it work.

Build an IoT Energy Meter 11



Variables & Functions

Variables:

1) V_sensor_reading

Used for storing the value received from the voltage sensor.

2) I_sensor_reading

Used for storing the value received from the current sensor.

3) meter.status

A status flag variable that tracks the status of the energy meter. It
can equal to either of 2 states - DATA_RECEIVED or V_I_COMPUTED.

4) meter.vrms

Stores the Root Mean Square Voltage value (VRMS)

5) meter.irms

Stores the Root Mean Square Current value (IRMS)

6) meter.power_factor

Stores the value of Power Factor of the circuit.

7) meter.power

Stores the value of Electrical Power flowing through the circuit.

8) meter.Energy

Stores the value of total Electrical Energy consumed by the circuit.

Build an IoT Energy Meter 12



Functions:

1) ADC_init();

Initialises the Analog to Digital Converter channel for reading the

current and voltage sensors..

2) Read_voltage();

Reads the voltage sensor and returns the reading value.

3) Read_current();

Reads the current sensor and returns the reading value.

4) Calc_RMS_values(V_sensor_reading, I_sensor_reading);

Inputs the values read by the sensors and calculates RMS values.

5) Measure_power_factor(V_sensor_reading, I_sensor_reading);

Inputs the values read by the sensors and calculates Power Factor.

6) Calc_power_energy(vrms, irms, power_factor);

Calculates the Power and Energy consumed by the electrical circuit.

7) UART_Transmit();

Transmits the values of the electricity parameters to the ESP32
device via UART communication interface.

8) Read_FRAM(data variable); & Write_FRAM(data variable);

Used for reading & writing specific data from and to the FRAM
memory.

Build an IoT Energy Meter 13



Implementing the Code

Let us convert our flowchart of steps into working code for the App
function. Use the corresponding functions and code shown below for each
step.

1) Initialise ADC: ADC_init();

2) The code will now enter an infinite while loop

while(1)
{

// Rest of code
}

3) Is data received from the sensors?:

if(meter.status == DATA_RECEIVED)
{

// Rest of code
}

4) Read values from Voltage and Current sensors:

V_sensor_reading = Read_voltage();

I_sensor_reading = Read_current();

5) Calculate RMS values of Voltage and Current:

Calc_RMS_values(V_sensor_reading, I_sensor_reading);

Build an IoT Energy Meter 14



6) Calculate the circuit’s Power Factor:

meter.power_factor = Measure_power_factor(V_sensor_reading,
I_sensor_reading);

7) Calculate Power, Energy and update values in FRAM:

Calc_power_energy(meter.vrms, meter.irms, meter.power_factor);

8) Transmit values to ESP32 via UART:

UART_Transmit();

After implementing these code commands inside the App() function in the
order specified, we will write the code for the Calc_power_energy and
UART_Transmit functions.

Below the App() function, you will find an incomplete function named
Calc_power_energy having 3 input parameters - vrms, irms & pf (recall
how we called the function in the App(), with 3 similar parameters). Using
these parameters, you must compute the values of power & energy
consumed and update them to the FRAMmemory. In the space designated
for User Code, implement the following steps:

meter.power = vrms * irms * pf;
Read_FRAM(meter.Energy);
meter.Energy += (meter.power / 3600);
Write_FRAM(meter.Energy);

Build an IoT Energy Meter 15



Next, we have to write the UART_Transmit function. To transmit data over
UART, we simply use the printf command. Eg.

printf("%06.2f", meter.vrms);

This command sends the value of meter.vrms as a 6-digit number, 2 of
which come after the decimal point.

Inside the User Code section in the UART_Transmit function, print the data
one after the other using the above printf commands in the order specified:

1) meter.vrms
2) meter.irms
3) meter.power_factor
4) meter.power
5) meter.Energy

Note that for sending meter.Energy, add a “\r\n” at the end of the "%06.2f".
This is to tell the receiving device that one set of data values has been sent.

printf("%06.2f\r\n", meter.Energy);

With this, the code in the STM32 IDE for the Dexter is completed. The
code can now be uploaded to the Dexter board by hitting ‘Run’. Note
that the project will not work yet as it is incomplete. It will only work
once the code for the ESP32 is written and the Ubidots platform is set
up.

Build an IoT Energy Meter 16



ESP32 & Ubidots Setup

Downloads & Installation

1) Download and install the Arduino IDE from here, if you haven’t already.

2) From the IoT Projects page on the Build Club website, download the
ESP32_Energy_Meter ZIP file and extract it.

3) For monitoring the values of the electrical parameters, we will be using the
Ubidots IoT Platform, as done for the Water Meter project. If you haven’t,
go to Ubidots.com/stem/ and sign up for free.

Build an IoT Energy Meter 17

https://www.arduino.cc/en/software
https://ubidots.com/stem/


Steps*

(*Steps 1-5 are required only if not done previously in the IoT Water Meter project)

1) Inside the extracted ESP32_Energy_Meter folder, you will find 2 folders
named esp32-mqtt-main & pubsubclient-master. Copy them and paste
them inside the ‘Libraries’ folder located in Documents > Arduino >
Libraries.

2) Launch the Arduino IDE. Go to File > Open and select the
ESP32_Energy_Meter.ino file from the ESP32_Energy_Meter folder. The
code will now open in the Arduino IDE.

3) Next, go to File > Preferences. In ‘Additional Boards Manager URLs’, if the
textbox is empty, paste the following link inside it:

https://dl.espressif.com/dl/package_esp32_index.json

If the textbox already has some other links, put a comma after them and
then paste the above link.

Build an IoT Energy Meter 18

https://dl.espressif.com/dl/package_esp32_index.json


4) Next, go to Tools > Board > Boards Manager. In the search bar on the top,
search ‘esp32’ and install the package. This will take some time to install.

5) From this link, download the CP210x Driver for your OS (eg. CP210x
Universal Windows Driver). Extract the ZIP folder. Right-click the silabser.inf
file inside and select install. Follow the prompts until installation is
successful. Restart your PC once installation completes.

6) Use 1 USB cable to connect the ESP32 device to your computer and the
other to connect the Dexter to the computer for uploading code. Before
uploading code to ESP32 from your computer, disconnect the jumper wire
from the PC4 pin of the Dexter. This is necessary for the code to upload
onto the ESP32.

Build an IoT Energy Meter 19

https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers?tab=downloads


Open the ESP32_Energy_Meter.ino file again in the Arduino IDE. Go to
Tools > Board > ESP32 Arduino and select ESP32 Dev Module. In the same
Tools menu, under ‘Port’, select the available COM port (eg. COM10).

7) Now go back to the Energy Meter code in the Arduino IDE. Fill in your wifi
connection’s name and password within the empty quotation marks next
to theWIFI_SSID andWIFI_PASS variables. Ensure the Wifi network has no
firewalls, else the ESP32 won’t connect to it.

8) On the Ubidots website, click on your profile icon and select API credentials.
Copy the ‘Default token’ on the top right part of the page and paste it into
the UBIDOTS_TOKEN variable, which is immediately below the Wifi
variables in the Arduino code.

9) Click the ‘Verify’ button on the Arduino IDE - shown by a tick symbol. Once
you receive the “Done compiling” message, click the ‘Upload’ button, shown
as a right arrow near the ‘Verify’ button. Wait until the “Done uploading”
message appears.

Build an IoT Energy Meter 20



10) Now reconnect the jumper to the PC4 pin as before. Click the magnifying
glass icon on the top-right of the Arduino IDE. It will open the Serial
Monitor. If the connection was successful, the Serial Monitor should look
like:

11) Now go to the Devices page of the Ubidots website. You will find a device
named energy_meter containing variables vrms, irms, power, power
factor and energy.

Build an IoT Energy Meter 21



12) Go to Data > Dashboards and click the + symbol. Select ‘Gauge’ and name
it ‘Energy consumed’. Click ‘Add Variables’ and select the energy variable
under the energy_meter device. Create another gauge similarly for the
power variable and if you wish also for vrms, irms and power_factor.
Make sure you select a suitable value range for each gauge.

Build an IoT Energy Meter 22



Tasks

1) Using a multimeter, calculate the voltage reading of a regular “220V”
power socket that you will be using to test the project. Note the
reading value.

2) Run the STM code on the Dexter and once completed run the Arduino
code on the ESP32, making sure PC4 isn’t connected. Reconnect the
jumper to the PC4 pin.

Initially, all the values in the Serial Monitor should read zero. Now put
the 40W bulb into the bulb holder. Connect the 2-pin plug into the
220V power socket and turn it on.

CAUTION: From now onwards, DO NOT touch any part of the
bulb circuit or the sensors while the power is on.

After turning on the bulb circuit, the variables should update in the
Serial Monitor. Go to the Ubidots Dashboard page - the meter
gauges should reflect the change in values.

3) Calibration: Is the reading for vrms of the circuit the same as the
reading taken using the multimeter before? If not, go to app.c in the
STM IDE and adjust the value of the V_calibration variable until the
value of vrmsmatches the multimeter reading.

Since we are using a 40W bulb, the value of power in the Serial
Monitor should lie between 39-41 watts. Now that our vrms reading is
accurate, inaccuracy in the power value will depend on the irms
value’s accuracy. This can be fixed by adjusting the I_calibration
variable in app.c

Build an IoT Energy Meter 23



4) Now that calibration is done, we can test our IoT Energy Meter. Turn
off the bulb circuit and replace the 40W bulb with the 60W bulb
provided in the kit. The value of power should now be between 58-62
watts and the irms value should be greater than before.

Real-world Application

This IoT Energy Meter setup can be used for any 220V single-phase AC
appliance (AC here means ‘Alternating Current’, not ‘Air Conditioner’!) that is
rated under 5A. This can be done by replacing the bulb with the appliance.
For example, you can replace the bulb with a 220V induction motor and
connect a fan to it.

For trying out a wider range of appliances, you can replace the bulb holder
with a 2-pin female socket. Now, you can directly plug in any permitted
appliance (should be rated 220V single-phase AC and under 5A) and
monitor its energy consumption.

Make a video presenting how you built and installed the IoT Energy Meter in
your college and the various appliances you connected and monitored.
Share it with the Build Club Community on the Discord Server!

Build an IoT Energy Meter 24

https://discord.gg/D54tWnv4dU

